Advertisement

Journal of Applied Spectroscopy

, Volume 85, Issue 1, pp 90–97 | Cite as

Taking into Account Interelement Interference in X-Ray Fluorescence Analysis of Thin Two-Layer Ti/V Systems

  • N. I. Mashin
  • A. G. Razuvaev
  • E. A. Cherniaeva
  • L. M. Gafarova
  • A.V. Ershov
Article

We propose a new method for determining the thickness of layers in x-ray fluorescence analysis of two-layer Ti/V systems, using easily fabricated standardized film layers obtained by sputter deposition of titanium on a polymer film substrate. We have calculated correction factors taking into account the level of attenuation for the intensity of the primary emission from the x-ray tube and the analytical line for the element of the bottom layer in the top layer, and the enhancement of the fluorescence intensity for the top layer by the emission of atoms in the bottom layer.

Keywords

x-ray fluorescence analysis two-layer thin film correction factor mass absorption coefficient polymer film substrate 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Yu. A. Ignatova, A. N. Eritenko, A. G. Revenko, and A. L. Tsvetyanskii, Analitika Kontrol’, 15, No. 2, 126–140 (2011).Google Scholar
  2. 2.
    V. R. Darashkevich, B. A. Malyukov, and G. M. Turovskaya, Zh. Anal. Khim., 34, No. 1, 138–141 (1979).Google Scholar
  3. 3.
    B. Kanrar, K. Sanyal, N. L. Misra, and S. K. Aggarwal, Spectrochim. Acta B: At. Spectrosc., 101, 130–133 (2015).ADSCrossRefGoogle Scholar
  4. 4.
    P. Jonnard, H. Maury, and J.-M. Andre, X-Ray Spectrom., 36, 72–75 (2007).ADSCrossRefGoogle Scholar
  5. 5.
    K. Nygård, K. Hämäläinen, S. Mannien, P. Jalas, and J.-P. Ruottinen, X-Ray Spectrom., 33, 354–359 (2004).ADSCrossRefGoogle Scholar
  6. 6.
    V. Ya. Borkhodoev, Zh. Analit. Khim., 53, No. 6, 571–577 (1998).Google Scholar
  7. 7.
    N. I. Mashin, N. K. Rudnevskii, Yu. S. Kalinin, and A. I. Mashin, Zav. Lab., 56, No. 12, 34–36 (1990).Google Scholar
  8. 8.
    E. E. Belyaeva, A. V. Ershov, A. I. Mashin, N. I. Mashin, and N. K. Rudnevskii, Zh. Anal. Khim., 53, No. 6, 638–640 (1998) [E. E. Belyaeva, A. V. Ershov, A. I. Mashin, N. I. Mashin, and N. K. Rudnevskii, J. Analyt. Chem., 53, 561–563 (1998) (English translation)].Google Scholar
  9. 9.
    N. I. Mashin, A. N. Tumanova, and N. K. Rudnevskii, Zh. Anal. Khim., 56, No. 6, 651–654 (2001) [N. I. Mashin, A. N. Tumanova, and N. K. Rudnevskii, J. Analyt. Chem., 56, 581–584 (2001) (English translation)].Google Scholar
  10. 10.
    N. I. Mashin, R. B. Lebedeva, A. N. Tumanova, and A. A. Ershov, Zh. Prikl. Spektrosk., 79, No. 2, 328–332 (2012) [N. I. Mashin, R. B. Lebedeva, A. N. Tumanova, and A. A. Ershov, J. Appl. Spectrosc., 79, No. 2, 307–311 (2012) (English translation)].Google Scholar
  11. 11.
    N. I. Mashin, E. A. Cherniaeva, A. N. Tumanova, and A. A. Ershov, Neorg. Mater. 49, No. 4, 372–375 (2013).CrossRefGoogle Scholar
  12. 12.
    K. Hirokawa, M. Suzuki, and H. Goto, Z. Anal. Chem., 199, No. 2, 89–94 (1964).CrossRefGoogle Scholar
  13. 13.
    H. Dahl and G. Schulz, Z. Angew. Phys., 29, No. 2, 117–121 (1970).Google Scholar
  14. 14.
    S. L. Dudik, B. D. Kalinin, R. I. Plotnikov, and S. K. Savel’ev, Analitika Kontrol’, 10, No. 3–4, 282–289 (2006).Google Scholar
  15. 15.
    V. Ya. Borkhodoev, Analitika Kontrol’, 19, No. 1, 40–44 (2015).Google Scholar
  16. 16.
    Sh. I. Duimakaev and M. V. Pot’kalo, Analitika Kontrol’, 20, No. 1, 23–33 (2016).Google Scholar
  17. 17.
    G. A. Bordovskii, A. V. Marchenko, P. P. Skregin, N. N. Smirnova, and E. I. Terukov, Pis′ma Zh. Tekh. Fiz., 35, No. 22, 15–22 (2009).Google Scholar
  18. 18.
    M. West, A. T. Ellis, P. J. Potts, C. Streli, C. Vanhoof, and P. Wobrauschek, J. Anal. At. Spectrom., 30, 1874–1877 (2015).CrossRefGoogle Scholar
  19. 19.
    V. R. Darashkevich, N. A. Kalinina, B. A. Malyukov, Yu. M. Ukrainskii, and S. P. Selivanova, Zav. Lab., 37, No. 12, 1449–1452 (1971).Google Scholar
  20. 20.
    F. E. Naumtsev, V. F. Volkov, and N. F. Losev, Zav. Lab., 54, No. 4, 30–33 (1988).Google Scholar
  21. 21.
    N. I. Mashin, A. G. Razuvaev, E. A. Chernyaeva, A. N. Tumanova, and A. A. Ershov, Zh. Prikl. Spektrosk., 80, No. 1, 5–11 (2013) [N. I. Mashin, A. G. Razuvaev, E. A. Chernyaeva, A. N. Tumanova, and A. A. Ershov, J. Appl. Spectrosc., 80, No. 1, 1–7 (2013) (English translation)].Google Scholar
  22. 22.
    N. I. Mashin, E. A. Chernyaeva, A. N. Tumanova, and L. M. Gafarova, Zh. Prikl. Spektrosc., 83, 65–69 (2016) [N. I. Mashin, E. A. Chernyaeva, A. N. Tumanova, and L. M. Gafarova, J. Appl. Spectrosc., 83, 56–60 (2016) (English translation)].Google Scholar
  23. 23.
    N. I. Mashin, E. A. Chernyaeva, and A. N. Tumanova, Neorg. Mater., 51, No. 1, 44–48 (2015).CrossRefGoogle Scholar
  24. 24.
    V. P. Afonin, N. I. Komyak, V. P. Nikolaev, and R. I. Plotnikov, X-Ray Fluorescence Analysis [in Russian], Nauka, Novosibirsk (1991), pp. 128–129.Google Scholar
  25. 25.
    A. S. Berezin and O. R. Mochalkina, Integrated Circuit Technology and Design [in Russian], Radio i Svyaz′, Moscow (1983), pp. 84–86.Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • N. I. Mashin
    • 1
  • A. G. Razuvaev
    • 1
  • E. A. Cherniaeva
    • 1
  • L. M. Gafarova
    • 1
  • A.V. Ershov
    • 1
  1. 1.N. I. Lobachevskii Nizhny Novgorod National Research State UniversityNizhnii NovgorodRussia

Personalised recommendations