Advertisement

Journal of Applied Spectroscopy

, Volume 85, Issue 1, pp 67–72 | Cite as

Stoichiometry of Silicon Dioxide Films Obtained by Ion-Beam Sputtering

  • E. V. Telesh
  • A. P. Dostanko
  • O. V. Gurevich
Article
  • 20 Downloads

The composition of SiOx films produced by ion-beam sputtering (IBS) of silicon and quartz targets were studied by infrared spectrometry. Films with thicknesses of 150–390 nm were formed on silicon substrates. It was found that increase in the partial pressure of oxygen in the working gas, increase in the temperature of the substrate, and the presence of a positive potential on the target during reactive IBS of silicon shifted the main absorption band νas into the high-frequency region and increased the composition index from 1.41 to 1.85. During IBS of a quartz target the stoichiometry of the films deteriorates with increase of the energy of the sputtering argon ions. This may be due to increase of the deposition rate. Increase in the current of the thermionic compensator, increase of the substrate temperature, and addition of oxygen led to the formation of SiOx films with improved stoichiometry.

Keywords

ion-beam sputtering silicon dioxide films IR spectroscopy composition stoichiometry 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    N. A. Valisheva, A. A. Guzev, A. P. Kovchavtsev, G. L. Kuryshev, T. A. Levtsova, and Z. V. Panova, Mikroélektronika, 38, No. 2, 99–106 (2009).Google Scholar
  2. 2.
    S.-I. Jun, T. E. McKnight, A. V. Melechko, M. L. Simpson, and P. D. Rack, Electr. Lett., 41, No. 14, 822–823 (2005).CrossRefGoogle Scholar
  3. 3.
    H. Faraby, M. Dibattista, and P. R. Bandaru, J. Appl. Phys., 116, No. 20, 204301 (2014).ADSCrossRefGoogle Scholar
  4. 4.
    A. Strass, P. Bieringer, W. Hansch, V. Fuenzalida, A. Alvarez, J. Luna, I. Martil, F.L. Martinez, and I. Eisele, Thin Solid Films, 349, 135–146 (1999).ADSCrossRefGoogle Scholar
  5. 5.
    S. A. Khodier and H. M. Sidki, J. Mater. Sci., Mater. Electron., 12, No. 2, 107–109 (2001).CrossRefGoogle Scholar
  6. 6.
    H. Qi, M. Zhu, M. Fang, S. Shao, C. Wie, K. Yi, and J. Shao, High Power Laser Sci. Eng., 1, No. 1, 36–43 (2013).CrossRefGoogle Scholar
  7. 7.
    L. Galais, H. Krol, J. Y. Natoli, M. Commandre, M. Cathelinaud, L. Roussel, M. Leguime, and C. Amra, Thin Solid Films, 515, 3830–3836 (2007).ADSCrossRefGoogle Scholar
  8. 8.
    C. Wei, K. Yi, Z. Fan, and J. Shao, Appl. Opt., 51, No. 28, 6781–6788 (2012).ADSCrossRefGoogle Scholar
  9. 9.
    D. I. Kushner and M. A. Hickner, Langmuir, 33, No. 21, 5261–5268 (2017).CrossRefGoogle Scholar
  10. 10.
    H.-D. Kurland, J. Grabow, C. Stötzel, and F. A. Müller, J. Ceram. Sci. Tech., 5, No. 4, 275–280 (2014).Google Scholar
  11. 11.
    V. Bhatt, S. Chandra, S. Kumar, C. M. S. Reuthan, and P. N. Dixit, Indian J. Pure Appl. Phys., 45, 377–381 (2007).Google Scholar
  12. 12.
    W.-F. Wu and B.-S. Chio, Semicond. Sci. Technol., 11, 1317–1321 (1996).ADSCrossRefGoogle Scholar
  13. 13.
    I. Radovič, Y. Serruys, Y. Limoge, M. Milosavlevič, N. Romčevič, and N. Bibič, Optoelectron. Adv. Mater., Rapid Commun., 1, No. 5, 247–251 (2007).Google Scholar
  14. 14.
    E. V. Telesh, N. K. Kasinskii, and V. S. Tomal’, Vestn. PGU, No. 4, 121–127 (2012).Google Scholar
  15. 15.
    P. Rüffer, A. Heft, R. Linke, T. Struppert, and B. Grünler, Surface and Coatings Technol., 232, 582–586 (2013).CrossRefGoogle Scholar
  16. 16.
    J.-K. Kim, S.-H. Jeong, B.-S. Kim, and S.-H. Shim, J. Phys. D: Appl. Phys., 37, 2425–2441 (2004).ADSCrossRefGoogle Scholar
  17. 17.
    Yu. A. Pentin and L. V. Vilkov, Physical Methods of Investigation in Chemistry, Mir, Moscow [Russian translation] (2006), pp. 199–214.Google Scholar
  18. 18.
    W. A. Pliskin, J. Vac. Sci. Technol., 14, No. 5, 1064–1081 (1977).ADSCrossRefGoogle Scholar
  19. 19.
    M. Misawa, Y. Kobayashi, and K. Suzuki, Proc. Int. Ion Engineering Congress, ISIAT83 & IPAT83, Kyoto (1983), pp. 957–962.Google Scholar
  20. 20.
    D. S. Veselov and Yu. A. Voronov, J. Phys.: Conf. Ser., 747, 012022 (2016).Google Scholar
  21. 21.
    G. Emiliani, S. Scaglione, J. Vac. Sci. Technol., A5, No. 4, 1824–1827 (1987).ADSCrossRefGoogle Scholar
  22. 22.
    A. P. Dostanko, E. S. Akulich, and V. Ya. Shiripov, Zh. Prikl. Spektrosk., 50, No. 3, 436–439 (1989) [A. P. Dostanko, E. S. Akulich, V. Ya. Shiripov, and S. A. Sobolev, J. Appl. Spectrosc., 50, No. 3, 303–306 (1989)].Google Scholar
  23. 23.
    A. L. Shabalov and M. S. Feldman, Thin Solid Films, 110, No. 3, 215–224 (1983).ADSCrossRefGoogle Scholar
  24. 24.
    I. W. Boyd and J. B. Wilson, J. Appl. Phys., 53, No. 6, 4166–4172 (1982).ADSCrossRefGoogle Scholar
  25. 25.
    A. P. Dostanko, S. M. Avakov, L. P. Anufriev, S. V. Bordusov, D. A. Golosov, S. M. Zavadskii, N. S. Koval’chuk, A. O. Korobko, V. L. Lanin, S. I. Mafveiko, V. A. Rusetskii, E. V. Telesh, E. A. Titko, and G. A. Trapashko, Integrated Technologies of Micro- and Nanostructured Layers: Monograph [in Russian], Bestprint, Minsk (2013), pp. 157–161.Google Scholar
  26. 26.
    J. P. Nair, I. Zon, M. Oron, R. Popovitz-Biro, Y. Feldman, and I. Lubomirsky, J. Appl. Phys., 92, 4784–4790 (2002).ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • E. V. Telesh
    • 1
  • A. P. Dostanko
    • 1
  • O. V. Gurevich
    • 1
  1. 1.Belarus State University of Informatics and RadioelectronicsMinskBelarus

Personalised recommendations