Skip to main content
Log in

Stoichiometry of Silicon Dioxide Films Obtained by Ion-Beam Sputtering

  • Published:
Journal of Applied Spectroscopy Aims and scope

The composition of SiOx films produced by ion-beam sputtering (IBS) of silicon and quartz targets were studied by infrared spectrometry. Films with thicknesses of 150–390 nm were formed on silicon substrates. It was found that increase in the partial pressure of oxygen in the working gas, increase in the temperature of the substrate, and the presence of a positive potential on the target during reactive IBS of silicon shifted the main absorption band νas into the high-frequency region and increased the composition index from 1.41 to 1.85. During IBS of a quartz target the stoichiometry of the films deteriorates with increase of the energy of the sputtering argon ions. This may be due to increase of the deposition rate. Increase in the current of the thermionic compensator, increase of the substrate temperature, and addition of oxygen led to the formation of SiOx films with improved stoichiometry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N. A. Valisheva, A. A. Guzev, A. P. Kovchavtsev, G. L. Kuryshev, T. A. Levtsova, and Z. V. Panova, Mikroélektronika, 38, No. 2, 99–106 (2009).

    Google Scholar 

  2. S.-I. Jun, T. E. McKnight, A. V. Melechko, M. L. Simpson, and P. D. Rack, Electr. Lett., 41, No. 14, 822–823 (2005).

    Article  Google Scholar 

  3. H. Faraby, M. Dibattista, and P. R. Bandaru, J. Appl. Phys., 116, No. 20, 204301 (2014).

    Article  ADS  Google Scholar 

  4. A. Strass, P. Bieringer, W. Hansch, V. Fuenzalida, A. Alvarez, J. Luna, I. Martil, F.L. Martinez, and I. Eisele, Thin Solid Films, 349, 135–146 (1999).

    Article  ADS  Google Scholar 

  5. S. A. Khodier and H. M. Sidki, J. Mater. Sci., Mater. Electron., 12, No. 2, 107–109 (2001).

    Article  Google Scholar 

  6. H. Qi, M. Zhu, M. Fang, S. Shao, C. Wie, K. Yi, and J. Shao, High Power Laser Sci. Eng., 1, No. 1, 36–43 (2013).

    Article  Google Scholar 

  7. L. Galais, H. Krol, J. Y. Natoli, M. Commandre, M. Cathelinaud, L. Roussel, M. Leguime, and C. Amra, Thin Solid Films, 515, 3830–3836 (2007).

    Article  ADS  Google Scholar 

  8. C. Wei, K. Yi, Z. Fan, and J. Shao, Appl. Opt., 51, No. 28, 6781–6788 (2012).

    Article  ADS  Google Scholar 

  9. D. I. Kushner and M. A. Hickner, Langmuir, 33, No. 21, 5261–5268 (2017).

    Article  Google Scholar 

  10. H.-D. Kurland, J. Grabow, C. Stötzel, and F. A. Müller, J. Ceram. Sci. Tech., 5, No. 4, 275–280 (2014).

    Google Scholar 

  11. V. Bhatt, S. Chandra, S. Kumar, C. M. S. Reuthan, and P. N. Dixit, Indian J. Pure Appl. Phys., 45, 377–381 (2007).

    Google Scholar 

  12. W.-F. Wu and B.-S. Chio, Semicond. Sci. Technol., 11, 1317–1321 (1996).

    Article  ADS  Google Scholar 

  13. I. Radovič, Y. Serruys, Y. Limoge, M. Milosavlevič, N. Romčevič, and N. Bibič, Optoelectron. Adv. Mater., Rapid Commun., 1, No. 5, 247–251 (2007).

    Google Scholar 

  14. E. V. Telesh, N. K. Kasinskii, and V. S. Tomal’, Vestn. PGU, No. 4, 121–127 (2012).

  15. P. Rüffer, A. Heft, R. Linke, T. Struppert, and B. Grünler, Surface and Coatings Technol., 232, 582–586 (2013).

    Article  Google Scholar 

  16. J.-K. Kim, S.-H. Jeong, B.-S. Kim, and S.-H. Shim, J. Phys. D: Appl. Phys., 37, 2425–2441 (2004).

    Article  ADS  Google Scholar 

  17. Yu. A. Pentin and L. V. Vilkov, Physical Methods of Investigation in Chemistry, Mir, Moscow [Russian translation] (2006), pp. 199–214.

  18. W. A. Pliskin, J. Vac. Sci. Technol., 14, No. 5, 1064–1081 (1977).

    Article  ADS  Google Scholar 

  19. M. Misawa, Y. Kobayashi, and K. Suzuki, Proc. Int. Ion Engineering Congress, ISIAT83 & IPAT83, Kyoto (1983), pp. 957–962.

  20. D. S. Veselov and Yu. A. Voronov, J. Phys.: Conf. Ser., 747, 012022 (2016).

    Google Scholar 

  21. G. Emiliani, S. Scaglione, J. Vac. Sci. Technol., A5, No. 4, 1824–1827 (1987).

    Article  ADS  Google Scholar 

  22. A. P. Dostanko, E. S. Akulich, and V. Ya. Shiripov, Zh. Prikl. Spektrosk., 50, No. 3, 436–439 (1989) [A. P. Dostanko, E. S. Akulich, V. Ya. Shiripov, and S. A. Sobolev, J. Appl. Spectrosc., 50, No. 3, 303–306 (1989)].

  23. A. L. Shabalov and M. S. Feldman, Thin Solid Films, 110, No. 3, 215–224 (1983).

    Article  ADS  Google Scholar 

  24. I. W. Boyd and J. B. Wilson, J. Appl. Phys., 53, No. 6, 4166–4172 (1982).

    Article  ADS  Google Scholar 

  25. A. P. Dostanko, S. M. Avakov, L. P. Anufriev, S. V. Bordusov, D. A. Golosov, S. M. Zavadskii, N. S. Koval’chuk, A. O. Korobko, V. L. Lanin, S. I. Mafveiko, V. A. Rusetskii, E. V. Telesh, E. A. Titko, and G. A. Trapashko, Integrated Technologies of Micro- and Nanostructured Layers: Monograph [in Russian], Bestprint, Minsk (2013), pp. 157–161.

    Google Scholar 

  26. J. P. Nair, I. Zon, M. Oron, R. Popovitz-Biro, Y. Feldman, and I. Lubomirsky, J. Appl. Phys., 92, 4784–4790 (2002).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. V. Telesh.

Additional information

Translated from Zhurnal Prikladnoi Spektroskopii, Vol. 85, No. 1, pp. 76–81, January–February, 2018.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Telesh, E.V., Dostanko, A.P. & Gurevich, O.V. Stoichiometry of Silicon Dioxide Films Obtained by Ion-Beam Sputtering. J Appl Spectrosc 85, 67–72 (2018). https://doi.org/10.1007/s10812-018-0613-9

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10812-018-0613-9

Keywords

Navigation