Advertisement

Journal of Applied Spectroscopy

, Volume 85, Issue 1, pp 61–66 | Cite as

The Raman Spectra and Molecular Relaxation Properties of Heterophase Glasses and Melts of K,Ca/CH3COO and Li,K,Cs/CH3COO

  • K. Sh. Rabadanov
  • M. M. Gafurov
  • A. R. Aliev
  • A. M. Amirov
  • M. G. Kakagasanov
Article
  • 14 Downloads

The Raman spectra and conductivity of KCH3COO–Ca(CH3COO)2 and LiCH3COO–KCH3COO–CsCH3COO vitrified acetate systems doped with fine Al2O3 and SiO2 powders at various concentrations were investigated. It was established that at temperatures below the glass formation temperature the addition of fine powders of Al2O3 and SiO2 increases the conductivity of heterophase glasses. It is shown that in the heterogeneous system there are two types of acetate ions differing in relaxation time.

Keywords

acetate heterophase system Raman spectroscopy glass melt vibrational relaxation inhomogeneous broadening 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. B. Goodenough and K.-S. Park, J. Am. Chem. Soc., 135, No. 4, 1167–1176 (2013).CrossRefGoogle Scholar
  2. 2.
    Joo Gon Kim, Byungrak Son, Santanu Mukherjee, Nicholas Schuppert, Alex Bates, Osung Kwon, Moon Jong Choi, Hyun Yeol Chung, and Sam Park, J. Power Sour., 282, 299–322 (2015).ADSCrossRefGoogle Scholar
  3. 3.
    Yu. V. Kosov, V. D. Prisyazhnyi, M. M. Gafurov, and G. G. Yaremchuk, Ukr. Khim. Zh., 55, No. 1, 19–22 (1989).Google Scholar
  4. 4.
    M. M. Gafurov and K. Sh. Rabadanov, Zh. Strukt. Khim., 50, No. 2, 262–266 (2009).Google Scholar
  5. 5.
    A. B. Béléké, M. Mizuhata, and S. Deki, Vibrat. Spectrosc., 40, No. 1, 66–79 (2006).CrossRefGoogle Scholar
  6. 6.
    M. M. Gafurov, K. Sh. Rabadanov, M. B. Ataev, M. G. Kakagasanov, A. M. Amirov, and Z. Yu. Kubataev, Zh. Prikl. Spektrosk., 84, No. 1, 13–18 (2017). [M. M. Gafurov, K. S. Rabadanov, M. B. Ataev, M. G. Kakagasanov, A. M. Amirov, and Z. Yu. Kubataev, J. Appl. Spectrosc., 84, No. 1, 8–12 (2017)].Google Scholar
  7. 7.
    A. M. Amirov, M. M. Gafurov, and K. Sh. Rabadanov, FTT, 58, No. 9, 1864–1866 (2016).Google Scholar
  8. 8.
    M. M. Gafurov, A. Sh. Rabadanov, M. B. Ataev, A. M. Amirov, Z. Yu. Kubataev, and M. G. Kakagasanov, FTT, 57, No. 10, 2011–2017 (2015).Google Scholar
  9. 9.
    A. Ubbelohde (A. I. Kitaigorodskii Ed.), Melting and Crystal Structures [Russian translation], Mir, Moscow (1969).Google Scholar
  10. 10.
    T. A. Mirnaya, V. D. Prisyazhnyi, and V. A. Shcherbakov, Usp. Khim., 58, No. 9 (1989) 1429–1450Google Scholar
  11. 11.
    M. M. Gafurov and K. Sh. Rabadanov, Zh. Prikl. Spektrosk., 76, No. 2, 176–181 (2009). [M. M. Gafurov and K. S. Rabadanov, J. Appl. Spectrosc., 76, No. 2, 162–166 (2009)].Google Scholar
  12. 12.
    M. M. Gafurov, A. Z. Gadzhiev, and V. D. Prisyazhnyi, in: Ionic Melts and Solid Electrolytes [in Russian], No. 4, Naukova Dumka, Kiev (1989), pp. 13–26.Google Scholar
  13. 13.
    M. M. Gafurov, A. R. Aliev, and V. D. Prisyazhnyi, Ukr. Khim. Zh., 66, Nos. 7–8, 96–100 (2000).Google Scholar
  14. 14.
    M. M. Gafurov and A. R. Aliev, Zh. Strukt. Khim., 46, No. 5, 856–860 (2005).Google Scholar
  15. 15.
    M. M. Gafurov, A. R. Aliev, M. B. Ataev, and K. Sh. Rabadanov, Spectrochim. Acta A, 114, 563–568 (2013).ADSCrossRefGoogle Scholar
  16. 16.
    R. L. Frost and J. T. Kloprogge, J. Mol. Struct., 526, 131–141 (2000).ADSCrossRefGoogle Scholar
  17. 17.
    Y. Marcus, Rec. Chem. Progr., 27, 105–110 (1966).Google Scholar
  18. 18.
    C. A. Angell, Solid State Ionics, 105, 15–24 (1998).CrossRefGoogle Scholar
  19. 19.
    S. Bajus, A. Deyko, A. Bösmann, F. Maier, H.-P. Steinruck, and P. Wasserscheid, Dalton Trans., 41, 14433–14438 (2012).CrossRefGoogle Scholar
  20. 20.
    N. F. Uvarov, A. S. Ulikhin, and Yu. G. Mateishina, Chemistry in the Interests of Stable Development [in Russian], 20, 95–106 (2012).Google Scholar
  21. 21.
    V. E. Pogorelov, A. P. Lizengevich, and I. I. Kondilenko, UFN, 127, 683–704 (1979).CrossRefGoogle Scholar
  22. 22.
    T. Kato and T. Takenaka, Mol. Phys., 46, 257–263 (1982).ADSCrossRefGoogle Scholar
  23. 23.
    N. V. Surovtsev, S. V. Adichtchev, and V. K. Malinovsky, Phys. Rev. E, 76, No. 2, 021502 (2007).ADSCrossRefGoogle Scholar
  24. 24.
    M. M. Gafurov, Zh. Prikl. Spektrosk., 50, No. 1, 141–143 (1989).Google Scholar
  25. 25.
    H. Tanaka, J. Chem. Phys., 111, No. 7, 3163–3174 (1999).ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • K. Sh. Rabadanov
    • 1
    • 2
  • M. M. Gafurov
    • 2
  • A. R. Aliev
    • 3
  • A. M. Amirov
    • 2
  • M. G. Kakagasanov
    • 2
    • 3
  1. 1.Dagestan State UniversityMakhachkalaRussia
  2. 2.Dagestan Scientific Center, Russian Academy of Sciences, Analytical Center for Collective UseMakhachkalaRussia
  3. 3.Kh. I. Amirkhanov Institute of Physics, Dagestan Scientific CenterRussian Academy of SciencesMakhachkalaRussia

Personalised recommendations