Journal of Applied Spectroscopy

, Volume 85, Issue 1, pp 42–47 | Cite as

Iterative Method to Obtain Raman Spectra of Organic Dyes by Their Chaotic Generation in Multiple-Scattering Media

  • V. P. Yashchuk
  • A. A. Sukhariev
  • A. P. Smaliuk

An iterative method is developed to obtain vibrational spectra of laser organic dyes from their secondary radiation spectra in multiple-scattering media, which manifests as a result of coupled process of chaotic generation (CG) and stimulated Raman scattering (SRS). The developed method increases significantly the capability to detect weak Raman lines by using batch processing of a set of experimental SRS-CG spectra, which makes it possible to optimize the deconvolution of these spectra and to average vibrational spectra obtained from the set of experimental SRS-CG spectra. The method is tested on spectra of the SRS-CG laser dye pyrromethene 597 in a vesicular film. The obtained results agree well with Raman spectra calculated by the Hartree–Fock method.


chaotic generation stimulated Raman scattering organic dyes multiple-scattering media vibrational spectrum iterative method pyrromethene 597 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Z.-H. Zhou, L. Liu, G.-Y. Wang, and Z.-Z. Xu, Chin. Phys., 15, No. 1, 126–131 (2006).ADSCrossRefGoogle Scholar
  2. 2.
    A. J. Meixner, T. Vosgrone, and M. Sackrow, J. Lumin., 9495, 147–152 (2001).Google Scholar
  3. 3.
    W. Werncke, A. Lau, M. Pfeiffer, H.-J. Weigmann, G. Hunsalz, and K. Lenz, Opt. Commun., 16, No. 1, 128–132 (1976).ADSCrossRefGoogle Scholar
  4. 4.
    S. A. Akhmanov and N. I. Koroteev, Usp. Fiz. Nauk, 123, No. 3, 405–471 (1977).ADSCrossRefGoogle Scholar
  5. 5.
    V. P. Yashchuk, E. A. Tikhonov, and O. A. Prigodyuk, Pis′ma Zh. Eksp. Teor. Fiz., 91, No. 4, 186–189 (2010).Google Scholar
  6. 6.
    V. P. Yashchuk, E. A. Tikhonov, A. O. Bukatar’, and O. A. Prigodyuk, Kvantovaya Elektron., 41, No. 10, 875–880 (2011).CrossRefGoogle Scholar
  7. 7.
    N. M. Lawandy, R. M. Balachandran, A. S. Gomes, and E. Sauvain, Nature, 368, 436–438 (1994).ADSCrossRefGoogle Scholar
  8. 8.
    V. P. Yashchuk, E. A. Tikhonov, and O. A. Prigodiuk, Mol. Cryst. Liq. Cryst., 535, 156–166 (2011).CrossRefGoogle Scholar
  9. 9.
    V. P. Yashchuk, A. O. Komyshan, E. A. Tikhonov, and L. A. Ol’khovik, Kvantovaya Elektron., 44, No. 10, 921–927 (2014).CrossRefGoogle Scholar
  10. 10.
    V. P. Yashchuk, A. P. Smaliuk, E. A. Tikhonov, and A. A. Sukhariev, Mol. Cryst. Liq. Cryst., 639, 160–168 (2016).CrossRefGoogle Scholar
  11. 11.
    V. P. Yashchuk, Laser Phys., 25, No. 7, 075702–075708 (2015).ADSCrossRefGoogle Scholar
  12. 12.
    V. P. Yashchuk and A. A. Sukhariev, IEEE Conf. Ser., 233–234; IEEE Proc. 7th Int. Conf. Advanced Optoelectronics and Lasers (CAOL), September 12–15, 2016, Odessa (2016), pp. 236–237.Google Scholar
  13. 13.
    Q. Zhang, L. Ge, Y. Gu, Y. Lin, G. Zeng, and J. Yang, X-ray Spectrom., 41, No. 2, 75–79 (2012).ADSCrossRefGoogle Scholar
  14. 14.
    C. M. Galloway, E. C. Le Ru, and P. G. Etchegoin, Appl. Spectrosc., 63, No. 12, 1370–1376 (2009).ADSCrossRefGoogle Scholar
  15. 15.
    J. Zhao, H. Lui, D. I. McLean, and H. Zeng, Appl. Spectrosc., 61, No. 11, 1225–1232 (2007).ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • V. P. Yashchuk
    • 1
  • A. A. Sukhariev
    • 1
  • A. P. Smaliuk
    • 1
  1. 1.Taras Shevchenko National University of KyivKyivUkraine

Personalised recommendations