Advertisement

Journal of Applied Spectroscopy

, Volume 85, Issue 1, pp 9–20 | Cite as

Rotational Isomers, Intramolecular Hydrogen Bond, and IR Spectra of o-Vinylphenol Homologs

  • V. P. Glazunov
  • D. V. Berdyshev
  • N. N. Balaneva
  • O. S. Radchenko
  • V. L. Novikov
Article

The ν(OH) stretching-mode bands in solution IR spectra of five o-vinylphenol (o-VPh) homologs in the slightly polar solvents CCl4 and n-hexane were studied. Several rotamers with free OH groups were found in solutions of o-VPh and its methyl-substituted derivatives in n-hexane. The proportion of rotamers in o-VPh homologs with intramolecular hydrogen bonds (IHBs) O–H...π varied from 22 to 97% in the gas and cyclohexane according to B3LYP/cc-pVTZ calculations. The theoretically estimated effective enthalpies –ΔH of their IHBs varied in the range 0.20–2.24 kcal/mol.

Keywords

o-vinyl-, o-propenyl-, and o-butenylphenols IR spectrum ν(OH) stretching-mode bands density functional rotamer intramolecular hydrogen bond, enthalpy 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    O. R. Wulf, U. Liddel, and S. B. Hendricks, J. Am. Chem. Soc., 58, No. 11, 2287– 2293 (1936).CrossRefGoogle Scholar
  2. 2.
    A. W. Baker and A. T. Shulgin, J. Am. Chem. Soc., 80, No. 10, 5358–5363 (1958).CrossRefGoogle Scholar
  3. 3.
    A. W. Baker and A. T. Shulgin, Spectrochim. Acta, 20, No. 1, 153–158 (1964).ADSCrossRefGoogle Scholar
  4. 4.
    M. Oki and H. Iwamura, Bull. Chem. Soc. Jpn., 33, No. 5, 681–684 (1960).CrossRefGoogle Scholar
  5. 5.
    M. Oki and H. Iwamura, Bull. Chem. Soc. Jpn., 39, No. 3, 470–476 (1966).CrossRefGoogle Scholar
  6. 6.
    M. Oki and H. Iwamura, Bull. Chem. Soc. Jpn., 33, No. 6, 717–721 (1960).CrossRefGoogle Scholar
  7. 7.
    D. V. Berdyshev, V. P. Glazunov, and V. L. Novikov, Izv. Ross. Akad. Nauk, Ser. Khim., 57, No. 3, 499–508 (2008) [Russ. Chem. Bull., Int. Ed., 57, No. 3, 510–519 (2008)].Google Scholar
  8. 8.
    R. J. Capon, E. L. Ghisalberti, and P. R. Jefferies, Aust. J. Chem., 35, No. 12, 2583–2587 (1982).CrossRefGoogle Scholar
  9. 9.
    A. Sato, T. Shindo, N. Kasanuki, and K. Hasegawa, J. Nat. Prod., 52, No. 5, 975–981 (1989).CrossRefGoogle Scholar
  10. 10.
    M. Aknin, T. L.-A. Dayan, A. Rudi, Y. Kashman, and E. M. Gaydou, J. Agric. Food Chem., 47, No. 10, 4175–4177 (1999).CrossRefGoogle Scholar
  11. 11.
    A. V. Danks and R. Hodges, Aust. J. Chem., 27, No. 7, 1603–1606 (1974).CrossRefGoogle Scholar
  12. 12.
    M. S. R. Nair and S. T. Carey, Tetrahedron Lett., 20, No. 35, 3233–3236 (1979).CrossRefGoogle Scholar
  13. 13.
    L. Kopanski, G.-R. Li, H. Besl, and W. Steglich, Liebigs Ann. Chem., No. 9, 1722–1729 (1982).Google Scholar
  14. 14.
    G. W. van Eijk and H. J. Roeijmans, Exp. Mycol., 8, No. 3, 266–268 (1984).CrossRefGoogle Scholar
  15. 15.
    W. J. Dale and H. E. Hennis, J. Am. Chem. Soc., 80, No. 14, 3645–3649 (1958).CrossRefGoogle Scholar
  16. 16.
    B. B. Corson, W. J. Heintzelman, L. H. Schwartzman, H. E. Tiefenthal, R. J. Lokken, J. E. Nickels, G. R. Atwood, and F. J. Pavlik, J. Org. Chem., 23, No. 4, 544–549 (1958).CrossRefGoogle Scholar
  17. 17.
    B. A. M. Oude-Alink, A. W. K. Chan, and C. D. Gutsche, J. Org. Chem., 38, No. 11, 1993–2001 (1973).CrossRefGoogle Scholar
  18. 18.
    G. Casiraghi, G. Casnati, G. Sartori, and L. Bolzoni, J. Chem. Soc., Perkin Trans. I, 2027–2029 (1979).Google Scholar
  19. 19.
    V. P. Glavunov, D. V. Berdyshev, N. N. Balaneva, O. S. Radchenko, and V. L. Novikov, Zh. Prikl. Spektrosk., 81, No. 1, 19–25 (2014) [V. P. Glavunov, D. V. Berdyshev, N. N. Balaneva, O. S. Radchenko, and V. L. Novikov, J. Appl. Spectrosc., 81, No. 1, 15–21 (2014)].Google Scholar
  20. 20.
    P. J. Stephens, F. J. Devlin, C. F. Chabalowski, and M. J. Frisch, J. Phys. Chem., 98, No. 45, 11623–11627 (1994).CrossRefGoogle Scholar
  21. 21.
    S. Miertus, E. Scrocco, and J. Tomasi, Chem. Phys., 55, No. 1, 117–129 (1981).ADSCrossRefGoogle Scholar
  22. 22.
    Gaussian 03, Revision D.01, Gaussian Inc., Wallingford СТ (2004).Google Scholar
  23. 23.
    M. Sibaev and D. L. Crittenden, J. Phys. Chem. A, 119, No. 52, 13107–13112 (2015).CrossRefGoogle Scholar
  24. 24.
    V. P. Glazunov and D. V. Berdyshev, Zh. Prikl. Spektrosk., 79, No. 5, 689–700 (2012) [V. P. Glazunov and D. V. Berdyshev, J. Appl. Spectrosc., 79, No. 5, 675–686 (2012)].Google Scholar
  25. 25.
    D. V. Berdyshev, V. P. Glazunov, and V. L. Novikov, Zh. Prikl. Spektrosk., 76, No. 5, 666–676 (2009) [D. V. Berdyshev, V. P. Glazunov, and V. L. Novikov, J. Appl. Spectrosc., 76, 630–640 (2009)].Google Scholar
  26. 26.
    D. V. Berdyshev, N. N. Balaneva, V. P. Glazunov, and V. L. Novikov, Izv. Ross. Akad. Nauk, Ser. Khim., 63, No. 9, 1976–(2014) [D. V. Berdyshev, N. N. Balaneva, V. P. Glazunov, and V. L. Novikov, Russ. Chem. Bull., 63, No. 9, 1976–1985(2014)].Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • V. P. Glazunov
    • 1
  • D. V. Berdyshev
    • 1
  • N. N. Balaneva
    • 1
  • O. S. Radchenko
    • 1
  • V. L. Novikov
    • 1
  1. 1.G. B. Elyakov Pacific Institute of Bioorganic Chemistry, Far-Eastern Branch of the Russian Academy of SciencesVladivostokRussia

Personalised recommendations