Journal of Applied Spectroscopy

, Volume 84, Issue 6, pp 1145–1152 | Cite as

Diminution in the Optical Band Gap and Near Band Edge Emission of Nickel-Doped Zinc Oxide Thin Films Deposited by Sol-Gel Method

  • V. Grace Masih
  • N. Kumar
  • A. Srivastava

Thin films of nickel-doped zinc oxide (Zn1−xNixO) show redshift in the optical band gap and in the near band edge (NBE) emission of the photoluminescence spectra. The Zn1−xNixO thin films obtained by sol-gel spin coating method show narrowing of the band gap from 3.23 to 3.00 eV as the concentration of nickel is increased from x = 0.00 to x = 0.06. All the Zn1−xNixO thin films have hexagonal wurtzite structure and show a decrease of 119 meV in the NBE emission as the dopant concentration is increased. X-ray diffraction (XRD) spectroscopy confirms the formation of ZnO in the films; Fourier transform infrared (FTIR) spectroscopy reaffirms this. Energy dispersive analysis (EDX) also ascertains the presence of Ni in the films and calculates the amount of dopant present in the films. Scanning electron microscopy (SEM) shows that all the Ni-doped ZnO thin films possess granular surface morphology.


ZnO thin films Ni dopant optical band gap photoluminescence 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. Janotti and C. G. Van de Walle, Rep. Prog. Phys., 72, 126501 (2009).ADSCrossRefGoogle Scholar
  2. 2.
    S. C. Das, R. J. Green, J. Podder, T. Z. Regier, G. S. Chang, and A. Moewes, J. Phys. Chem. C, 117, 12745–12753 (2013).CrossRefGoogle Scholar
  3. 3.
    S. Mondal and P. Mitra, Indian J. Phys., 87, 125–131 (2013).ADSCrossRefGoogle Scholar
  4. 4.
    J. Ramesh, G. Pasupathi, R. Mariappan, V. S. Kumar, and V. Ponnuswamy, Optik, 124, 2023–2027 (2013).ADSCrossRefGoogle Scholar
  5. 5.
    M. E. Ghazi, M. Izadifard, F. E. Ghodsi, and M. Yuonesi, J. Supercond. Nov. Magn., 25, 101–108 (2012).CrossRefGoogle Scholar
  6. 6.
    S. Thakur, J. Kumar, J. Sharma, N. Sharma, and P. Kumar, J. Optoelectron. Adv. Mater., 15, 989–994 (2013).Google Scholar
  7. 7.
    K. Nakahara, H. Takasu, P. Fons, A. Yamada, K. Iwata, K. Matsubara, R. Hunger, and S. Niki, Appl. Phys. Lett., 79, 4139–4141 (2001).ADSCrossRefGoogle Scholar
  8. 8.
    D. K. Hwang, M. S. Oh, J. H. Lim, and S. J. Park, J. Phys. D: Appl. Phys., 40, R387–R412 (2007).ADSCrossRefGoogle Scholar
  9. 9.
    W. T. Yen, Y. C. Lin, and J. H. Ke, Appl. Surf. Sci., 257, 960–968 (2010).ADSCrossRefGoogle Scholar
  10. 10.
    V. Musat, A. M. Rego, R. Monteiro, and E. Fortunato, Thin Solid Films, 516, 1512–1515 (2008).ADSCrossRefGoogle Scholar
  11. 11.
    S. Dixit, A. Srivastava, R. K. Shukla, and A. Srivastava, J. Mater. Sci.-Mater. Electron., 19, 788–792 (2008).CrossRefGoogle Scholar
  12. 12.
    W. J. Huang, S. A. De Valle, J. B. K. Kana, K. S. Potter, and B. G. Potter Jr., Sol. Energy Mater. Sol. Cells, 137, 86–92 (2015).CrossRefGoogle Scholar
  13. 13.
    S. Sharma, S. Vyas, C. Periasamy, and P. Chakrabarti, Superlattices Microstruct., 75, 378–389 (2014).ADSCrossRefGoogle Scholar
  14. 14.
    W. C. Shih, M. J. Wang, and I. N. Lin, Diamond Relat. Mater., 17, 390–395 (2008).ADSCrossRefGoogle Scholar
  15. 15.
    S. N. F. Hasim, M. A. A. Hamid, R. Shamsudin, and A. Jalar, J. Phys. Chem. Solids, 70, 1501–1504 (2009).ADSCrossRefGoogle Scholar
  16. 16.
    K. P. Misra, R. K. Shukla, A. Srivastava, and A. Srivastava, Appl. Phys. Lett., 95, 31901 (2009).CrossRefGoogle Scholar
  17. 17.
    P. C. Yao, S. T. Hang, Y. S. Lin, W. T. Yen, and Y. C. Lin, Appl. Surf. Sci., 257, 1441–1448 (2010).ADSCrossRefGoogle Scholar
  18. 18.
    O. Lupan, T. Pauporté, L. Chow, B. Viana, F. Pellé, L. K. Ono, B. Roldan Cuenya, and H. Heinrich, Appl. Surf. Sci., 256, 1895–1907 (2010).ADSCrossRefGoogle Scholar
  19. 19.
    M. Gupta, V. Sharma, J. Shrivastava, A. Solanki, A. P. Singh, V. R. Satsangi, S. Dass, and R. Shrivastav, Bull. Mater. Sci., 32, 23–30 (2009).CrossRefGoogle Scholar
  20. 20.
    F. K. Shan, B. I. Kim, G. X. Liu, Z. F. Liu, J. Y. Sohn, W. J. Lee, B. C. Shin, and Y. S. Yu, J. Appl. Phys., 95, 4772–4776 (2004).ADSCrossRefGoogle Scholar
  21. 21.
    D. Song, P. Widenborg, W. Chin, and A. G. Aberle, Sol. Energy Mater. Sol. Cells, 73, 1–20 (2002).CrossRefGoogle Scholar
  22. 22.
    S. T. Tan, B. J. Chen, X. W. Sun, W. J. Fan, H.S. Kwok, X. H. Zhang, and S. J. Chua, J. Appl. Phys., 98, 13505 (2005).ADSCrossRefGoogle Scholar
  23. 23.
    M. Saleem, L. Fang, H. B. Ruan, F. Wu, Q. L. Huang, C. L. Xu, and C. Y. Kong, Int. J. Phys. Sci., 7, 2971–2979 (2012). (26)CrossRefGoogle Scholar
  24. 24.
    S. Ilican, Y. Caglar, and M. Caglar, J. Optoelectron. Adv. Mater., 10, 2578–2583 (2008).Google Scholar
  25. 25.
    B. D. Cullity and S. R. Stock, Elements of X-ray Diffraction, 3rd ed., Prentice Hall, New Jersey (2001).Google Scholar
  26. 26.
    C. S. Barret and T. B. Massalski, Structure of Metals, Pergamon Press, Oxford (1980).Google Scholar
  27. 27.
    Y. Li, L. Xu, X. Li, X. Shen, and A. Wang, Appl. Surf. Sci., 256, 4543–4547 (2010).ADSCrossRefGoogle Scholar
  28. 28.
    L. Xu, X. Li, Y. Chen, and F. Xu, Appl. Surf. Sci., 257, 4031–4037 (2011).ADSCrossRefGoogle Scholar
  29. 29.
    A. J. Dekker, Solid State Physics, Macmillan India Ltd., India (2003).Google Scholar
  30. 30.
    A. Ghosh and R. N. P. Choudhary, J. Exp. Nanosci., 5, 134–142 (2010).CrossRefGoogle Scholar
  31. 31.
    A. Ghosh and R. N. P. Choudhary, Phys. Status Solidi A, 206, 535–539 (2009).ADSCrossRefGoogle Scholar
  32. 32.
    Ü. Özgür, Y.I. Alivov, C. Liu, A. Teke, M. A. Reshchikov, S. Doğan, V. Avrutin, S.-J. Cho, and H. Morkoçd, J. Appl. Phys., 98, 041301 (2005).ADSCrossRefGoogle Scholar
  33. 33.
    V. A. Nikitenko, Zh. Prikl. Spektrosk., 57, 367–385 (1992) [V. A. Nikitenko, J. Appl. Spectrosc., 57, 367–385 (1992)].Google Scholar
  34. 34.
    R. N. Gayen, K. Sarkar, S. Hussain, R. Bhar, and A.K. Pal, Indian J. Pure Appl. Phys., 49, 470–477 (2011).Google Scholar
  35. 35.
    X. W. Du, Y. S. Fu, J. Sun, X. Han, and J. Liu, Semicond. Sci. Technol., 21, 1202 (2006).ADSCrossRefGoogle Scholar
  36. 36.
    S. L. Patil, M. A. Chougule, S. G. Pawar, S. Sen, and V. B. Patil, Soft Nanosci. Lett., 2, 46–53 (2012).CrossRefGoogle Scholar
  37. 37.
    T. Ivanova, A. Harizanova, T. Koutzarova, and B. Vertruyen, Cryst. Res. Technol., 45, 1154–1160 (2010).CrossRefGoogle Scholar
  38. 38.
    K. Mishchik, A. Ferrer, A. Ruiz de la Cruz, A. Mermillod-Blondin, C. Mauclair, Y. Ouerdane, A. Boukenter, J. Solis, and R. Stoian, Opt. Mater. Express, 3, 67–85 (2013).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.University of Lucknow, Department of PhysicsLucknowIndia

Personalised recommendations