Advertisement

Journal of Applied Spectroscopy

, Volume 84, Issue 6, pp 1139–1144 | Cite as

Spectrophotometric Determination of Tris(2-Chloroethyl)Amine Using Acid Dyes

  • T. Rozsypal
  • E. Halámek
  • Z. Kobliha
Article
  • 24 Downloads

Methods of extraction-spectrophotometric determination of tris(2-chloroethyl)amine using nine acid dyes from the groups of sulfonephthaleins, sulfonated anthraquinones, and azo dyes have been developed. These procedures are based on the formation of the ion associates of the reactants and their extraction into chloroform. The conditions of the determination were optimized to determine the optimal pH for extraction from the water phase, the optimal excess of the dye, and the time needed for the extraction. The limits of detection and determination, the molar absorptivities of ion associates, extraction efficiency, distribution ratio, and conditional extraction constants for the separate procedures of determination were calculated. Of the studied acid dyes, the most suitable agents for determining the analyte were bromothymol blue and Acid Blue 129. These procedures are relatively undemanding in terms of time and instruments required and can be applied in field analysis of nitrogen mustards.

Keywords

nitrogen mustard sulfonephthaleins sulfonated anthraquinones sulfonated azo dyes tertiary amine field analysis 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    K. Ward, J. Am. Chem. Soc., 57, 914–916 (1935).CrossRefGoogle Scholar
  2. 2.
    H. McCombie and D. Purdie, J. Chem. Soc., 1217 (1935).Google Scholar
  3. 3.
    L. Szinicz, Toxicology, 214, 167–181 (2005).CrossRefGoogle Scholar
  4. 4.
    V. Pitschmann, Chemici v laboratoři a na bitevním poli: kapitoly z dějin chemických, toxinových a zápalných zbraní: období od roku 1914 do roku 1945, Prague, Czech Republic, Naše vojsko (2012).Google Scholar
  5. 5.
    Z. Oktábec and J. Jampílek, Chem. Listy, 107, 151–159 (2013).Google Scholar
  6. 6.
    E. Halámek and Z. Kobliha, Chem. Listy, 105, 323–333 (2011).Google Scholar
  7. 7.
    Y. Sakurai and K. Ito, Chem. Pharm. Bull., 8, 655–656 (1960).CrossRefGoogle Scholar
  8. 8.
    R. M. Black and R. W. Read, J. Chromatogr., A, 759, 79–92 (1997).CrossRefGoogle Scholar
  9. 9.
    R. W. Read and R. M. Black, J. Chromatogr., A, 862, 169–177 (1999).CrossRefGoogle Scholar
  10. 10.
    J. V. Headley, K. M. Peru, and L. C. Dickson, Rapid Commun. Mass Spectrom., 13, 730–736 (1999).ADSCrossRefGoogle Scholar
  11. 11.
    S. W. Lemire, D. L. Ashley, and A. M. Calafat, J. Anal. Toxicol., 27, 1–6 (2003).CrossRefGoogle Scholar
  12. 12.
    S. W. Lemire, J. R. Barr, D. L. Ashley, C. T. Olson, and T. L. Hayes, J. Anal. Toxicol., 28, 320–326 (2004).CrossRefGoogle Scholar
  13. 13.
    H.-C. Chua, H.-S. Lee, and M. T. Sng, J. Chromatogr., A, 1102, 214–223 (2006).CrossRefGoogle Scholar
  14. 14.
    J. R. Stuff, R. L. Cheicante, H. D. Durst, and J. L. Ruth, J. Chromatogr., A, 849, 529–540 (1999).CrossRefGoogle Scholar
  15. 15.
    I. Aiko, Chem. Pharm. Bull., 1, 335–337 (1953).CrossRefGoogle Scholar
  16. 16.
    V. V. Singh, G. Gupta, R. Sharma, M. Boopathi, P. Pandey, K. Ganesan, B. Singh, D. C. Tiwari, and R. Jain, Synth. Methods, 159, 1960–1967 (2009).CrossRefGoogle Scholar
  17. 17.
    M. Hutter and H. Schindlbauer, Z. Umweltchem. Ökotox., 5, 190–193 (1993).CrossRefGoogle Scholar
  18. 18.
    E. G. Trams, Anal. Chem., 30, 256–259 (1958).CrossRefGoogle Scholar
  19. 19.
    J. Epstein, R. W. Rosenthal, and R. J. Ess, Anal. Chem., 27, 1435–1439 (1955).CrossRefGoogle Scholar
  20. 20.
    P. A. Provencher and J. A. Love, J. Org. Chem., 80, 9603–9609 (2015).CrossRefGoogle Scholar
  21. 21.
    F. M. Issa, H. S. Youssef, and R. M. Issa, Egypt. J. Chem., 18, 257–264 (1975).Google Scholar
  22. 22.
    E. Halámek and Z. Kobliha, Talanta, 48, 163–171 (1999).CrossRefGoogle Scholar
  23. 23.
    E. Halámek, Z. Kobliha, and V. Pitschmann, Analysis of Chemical Warfare Agents, Brno, Czech Republic, University of Defence (2009).Google Scholar
  24. 24.
    Puffersubstanzen, Pufferlösungen, Puffer-Titrisole, Darmstadt, Germany, Reagenzien Merck (1977).Google Scholar
  25. 25.
    J. Inczédy, Analytical Applications of Complex Equilibria, Chichester, United Kingdom, Ellis Horwood (1976).Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Nuclear, Biological, and Chemical Defence InstituteUniversity of DefenceVyškovCzech Republic

Personalised recommendations