Journal of Applied Spectroscopy

, Volume 84, Issue 6, pp 1124–1130 | Cite as

Visualization of Porphyrin-Based Photosensitizer Distribution from Fluorescence Images In Vivo Using an Optimized RGB Camera


A handheld RGB camera was developed to monitor the in vivo distribution of porphyrin-based photosensitizer (PS) hematoporphyrin monomethyl ether (HMME) in blood vessels during photodynamic therapy (PDT). The focal length, f-number, International Standardization Organization (ISO) sensitivity, and shutter speed of the camera were optimized for the solution sample with various HMME concentrations. After the parameter optimization, it was found that the red intensity value of the fluorescence image was linearly related to the fluorescence intensity under investigated conditions. The RGB camera was then used to monitor the in vivo distribution of HMME in blood vessels in a skin-fold window chamber model. The red intensity value of the recorded RGB fluorescence image was found to be linearly correlated to HMME concentrations in the range 0–24 μM. Significant differences in the red to green intensity ratios were observed between the blood vessels and the surrounding tissue.


photodynamic therapy hematoporphyrin monomethyl ether fluorescence image RGB camera fluorescence intensity 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    B. C. Wilson and M. S. Patterson, Phys. Med. Biol., 53, R61–R109 (2008).ADSCrossRefGoogle Scholar
  2. 2.
    B. W. Pogue, J. T. Elliott, S. C. Kanick, S. C. Davis, K. S. Samkoe, E. V. Maytin, S. P. Pereira, and T. Hasan, Phys. Med. Biol., 61, R57–R89 (2016).ADSCrossRefGoogle Scholar
  3. 3.
    M. P. Samtsov, D. S. Tarasau, K. N. Kaplevsky, E. S. Voropy, P. T. Petrov, and Y. P. Istomin, J. Appl. Spectrosc., 83, No. 1, 79–84 (2016).ADSCrossRefGoogle Scholar
  4. 4.
    B. Li, L. Lin, H. Lin, and B. C. Wilson, J. Biophoton., 9, No. 11, 1314–1325 (2016).CrossRefGoogle Scholar
  5. 5.
    J. Xue, C. Li, H. Liu, J. Wei, N. Chen, and J. Huang, Photodiagn. Photodyn. Ther., 8, 267–274 (2011).CrossRefGoogle Scholar
  6. 6.
    S. Iinuma, K. T. Schomacker, G. Wagnieres, M. Rajadhyaksha, and M. Bamberg, Cancer Res., 59, 6164–6170 (1999).Google Scholar
  7. 7.
    B. W. Pogue, C. Sheng, J. Benevides, D. Forcione, B. Puricelli, N. Nishioka, and T. Hasan, J. Biomed. Opt., 13, 034009 (2008).ADSCrossRefGoogle Scholar
  8. 8.
    C. W. Lin, J. R. Shulok, Y. K. Wong, C. F. Schanbacher, L. Cincotta, and J. W. Foley, Cancer Res., 51, 1109–1116 (1991).Google Scholar
  9. 9.
    G. G. Miller, K. Brown, R. B. Moore, M. S. McPhee, Z. J. Diwu, J. Liu, L. Huang, J. W. Lown, D. A. Begg, V. Chlumecky, and J. Tulip. Photochem. Photobiol., 61, 632–638 (1995).CrossRefGoogle Scholar
  10. 10.
    P. A. Valdés, F. Leblond, V. L. Jacobs, B. C. Wilson, K. D. Paulsen, and D. W. Roberts, Sci. Rep., 2, 798 (2012).ADSCrossRefGoogle Scholar
  11. 11.
    M. D. Glidden, J. P. Celli, I. Massodi, I. Rizvi, B. W. Pogue, and T. Hasan, Theranostics, 2, 827–839 (2012).CrossRefGoogle Scholar
  12. 12.
    D. Jakovels, J. Spigulis, and L. Rogule, Proc. SPIE, 8087, 80872B (2011).ADSCrossRefGoogle Scholar
  13. 13.
    I. Nishidate, N. Tanaka, T. Kawase, T. Maeda, T. Yuasa, Y. Aizu, T. Yuasa, and K. Niizeki, J. Biomed. Opt., 16, 086012 (2011)ADSCrossRefGoogle Scholar
  14. 14.
    D. Jakovels, I. Kuzmina, A. Berzina, L. Valeine, and J. Spigulisa, J. Biomed. Opt., 18, 126019 (2013).ADSCrossRefGoogle Scholar
  15. 15.
    I. Nishidate, Y. Harasaki, S. Kawauchi, S. Sato, M. Sato, and Y. Kokubo, Proc. SPIE, 9690, 96900Q (2016).ADSCrossRefGoogle Scholar
  16. 16.
    S. Yu, L. Lin, and H. Lin, J. Optoelectron. Laser, 19, 1283–1286 (2008).Google Scholar
  17. 17.
    M. Lv, F. Qin, L. Mao, L. Zhang, S. Lv, J. Jin, and Z. Zhang, Laser. Med. Sci., 30, 2151–2156 (2015).CrossRefGoogle Scholar
  18. 18.
    G. M. Palmer, A. N. Fontanella, S. Shan, G Hanna, G. Zhang, C. L. Fraser, and M. W. Dewhirst, Nat. Protoc., 6, 1355–1366 (2011).CrossRefGoogle Scholar
  19. 19.
    L. C. Courrol, F. R. de Oliveira Silva, E. L. Coutinho, M. F. Piccoli, R. D. Mansano, N. D. Vieira Jur., N. Schor, and M. H. Bellini, J. Fluoresc., 17, 289–292 (2007).Google Scholar
  20. 20.
    V. Masilamani, K. Al-Zhrani, M. Al-Salhi, A. Al-Diab, and M. Al-Ageily, J. Lumin., 109, 143–154 (2004).Google Scholar
  21. 21.
    L. Liu, L. Lin, W. Li, C. Yang, Z. Huang, S. Xie, and B. Li, Proc. SPIE, 8577, 857703 (2013).CrossRefGoogle Scholar
  22. 22.
    L. Lin, H. Lin, D. Chen, L. Chen, M. Wang, S. Xie, Y. Gu, B. C. Wilson, and B. Li, Proc. SPIE, 9129, 912920 (2014).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.MOE Key Laboratory of OptoElectronic Science and Technology for Medicine, Fujian Provincial Key Laboratory for Photonics TechnologyFujian Normal UniversityFujianChina

Personalised recommendations