Advertisement

Journal of Applied Spectroscopy

, Volume 84, Issue 6, pp 1108–1113 | Cite as

Transversely Excited Atmospheric CO2 Laser-Induced Plasma Spectroscopy for the Detection of Heavy Metals in Soil

  • A. Khumaeni
  • H. Sugito
  • W. Setia Budi
  • A. Yoyo Wardaya
Article
  • 23 Downloads

A rapid detection of heavy metals in soil was presented by the metal-assisted gas plasma method using specific characteristics of a pulsed, transversely excited atmospheric (TEA) CO2 laser. The soil particles were placed in a hole made of acrylic plate. The sample was covered by a to prevent the soil particles from being blown off. The mesh also functioned to initiate a luminous plasma. When a TEA CO2 laser (1500 mJ, 200 ns) was focused on the soil sample, passing through the metal mesh, some of the laser energy was used to generate the gas plasma on the mesh surface, and the remaining laser energy was employed to ablate the soil particles. The fine, ablated soil particles moved into the gas plasma region to be dissociated and excited. Using this technique, analysis can be made with reduced sample pretreatment, and therefore a rapid analysis can be performed efficiently. The results proved that the signal to noise ratio (S/N) of the emission spectral lines is much better for the case of the present method (mesh method) compared to the case of standard laser-induced breakdown spectroscopy using the pellet method. Rapid detection of heavy metal elements in soil has been successfully carried out. The detection limits of Cu and Hg in soil were estimated to be 3 and 10 mg/kg, respectively. The present method has good potential for rapid and sensitive detection of heavy metals in soil samples.

Keywords

heavy metal detection soil analysis laser-induced plasma spectroscopy laser-induced breakdown spectroscopy TEA CO2 laser 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    N. Nanos and J. A. R. Martin, Geoderma, 189190, 554–562 (2012).Google Scholar
  2. 2.
    Q. Zhang, J. Ye, J. Chen, H. Xu, C. Wang, and M. Zhao, Environ. Pollut., 185, 258–265 (2014).CrossRefGoogle Scholar
  3. 3.
    X. Liu, Q. Song, Y. Tang, J. Xu, J. Wu, F. Wang, and P. C. Brookes, Sci. Total Environ., 463464, 530–540 (2013).Google Scholar
  4. 4.
    Z. Li, Z. Ma, T. J. v. d. Kuijp, Z. Yuan, and L. Huang, Sci. Total Environ., 468469, 843–853 (2014).Google Scholar
  5. 5.
    L. A. Hutton, G. D. O’Neil, T. L. Read, Z. J. Ayrest, M. E. Newton, and J. V. Macpherson, Anal. Chem., 86, 4566–4572 (2014)CrossRefGoogle Scholar
  6. 6.
    J. Q. McComb, C. Rogers, F. X. Han, and P. B. Tchounwou, Water, Air, Soil Pollut., 225, 2169 (2014).CrossRefGoogle Scholar
  7. 7.
    J. Zhao, X. Yan, T. Zhou, J. Wang, H. Li, P. Zhang, H. Ding, and L. Ding, J. Anal. At. Spectrom., 30, 1920–1926 (2015).CrossRefGoogle Scholar
  8. 8.
    K. Rifai, S. Laville, F. Vidal, M. Sabsabi, and M. Chaker, J. Anal. At. Spectrom., 27, 276–283 (2012).CrossRefGoogle Scholar
  9. 9.
    E. M. Cahoon and J. R. Almirall, Anal. Chem., 84, 2239–2244 (2012).CrossRefGoogle Scholar
  10. 10.
    C. M. Li, Z. M. Zou, X. Y. Yang, Z. Q. Hao, L. B. Guo, X. Y. Li, Y. F. Lu, and X. Y. Zeng, J. Anal. At. Spectrom., 29, 1432–1437 (2014).CrossRefGoogle Scholar
  11. 11.
    P. Yaroshchyk, D. L. Death, and S. J. Spencer, J. Anal. At. Spectrom., 27, 92–98 (2012).CrossRefGoogle Scholar
  12. 12.
    A. K. Myakalwar, S. Sreedhar, I. Barman, N. C. Dingari, S. V. Rao, P. P. Kiran, S. P. Tewari, and G. M. Kumar, Talanta, 87, 53–59 (2011).CrossRefGoogle Scholar
  13. 13.
    E. M. Cahoon and J. R. Almirall, Appl. Opt., 49, C49–C57 (2010).CrossRefGoogle Scholar
  14. 14.
    D. A. Cremers and L. J. Radziemski, Handbook of Laser-Induced Breakdown Spectroscopy, John Wiley and Sons, Ltd., Chichester (2006).CrossRefGoogle Scholar
  15. 15.
    A. W. Miziolek, V. Palleschi, and I. Schechter, Laser-Induced Breakdown Spectroscopy (LIBS): Fundamentals and Applications, Cambridge University Press (2006).Google Scholar
  16. 16.
    S. C. Jantzi and J. R. Almirall, Anal. Bioanal. Chem., 400, 3341–3351 (2011).CrossRefGoogle Scholar
  17. 17.
    V. S. Burakov, S. N. Raikov, N. V. Tarasenko, M. V. Belkov, and V. V. Kiris, J. Appl. Spectrosc., 77, 595–608 (2010).ADSCrossRefGoogle Scholar
  18. 18.
    M. Dell’Aglio, R. Gaudiuso, G. S. Senesi, A. D. Giacomo, C. Zaccone, T. M. Miano, and O. D. Pascale, J. Environ. Monit., 13, 1422–1426 (2011).CrossRefGoogle Scholar
  19. 19.
    E. C. Ferreira, J. A. G. Neto, D. M. B. P. Milori, and E. J. Ferreira, Spectrochim. Acta B, 110, 96–99 (2015).ADSCrossRefGoogle Scholar
  20. 20.
    A. M. Popov, M. O. Kozhnov, S. M. Zaytsev, N. B. Zorov, and T. A. Labutin, J. Appl. Spectrosc., 82, 739–743 (2015).ADSCrossRefGoogle Scholar
  21. 21.
    A. Khumaeni, Z. S. Lie, Y. I. Lee, K. Kurihara, K. Kagawa, and H. Niki, Appl. Spectrosc., 65, 236–241 (2011).ADSCrossRefGoogle Scholar
  22. 22.
    A. Khumaeni, H. Niki, K. Fukumoto, Y. Deguchi, K. Kurihara, K. Kagawa, and Y. I. Lee, Curr. Appl. Phys., 11, 423–427 (2011).ADSCrossRefGoogle Scholar
  23. 23.
    A. Khumaeni, Z. S. Lie, W. Setiabudi, K. H. Kurniawan, and K. Kagawa, J. Phys.: Conf. Ser., 622, 012057 (2015).Google Scholar
  24. 24.
    M. Ramli, N. Idris, H. Niki, K. H. Kurniawan, and K. Kagawa, Jpn. J. Appl. Phys., 47, 688–694 (2008).CrossRefGoogle Scholar
  25. 25.
    A. Khumaeni, Z. S. Lie, H. Niki, Y. I. Lee, K. Kurihara, M. Wakasugi, T. Takahashi, and K. Kagawa, Appl. Opt., 51, B121–B129 (2012).CrossRefGoogle Scholar
  26. 26.
    A. Khumaeni, Z. S. Lie, Y. I. Lee, K. Kurihara, K. H. Kurniawan, K. Fukumoto, K. Kagawa, and H. Niki, Jpn. J. Appl. Phys., 51, 082403 1–9 (2012).Google Scholar
  27. 27.
    J. D. Ingle Jr. and S. R. Crouch, Spectrochemical Analysis, Prentice Hall, New Jersey (1988).Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • A. Khumaeni
    • 1
  • H. Sugito
    • 1
  • W. Setia Budi
    • 1
  • A. Yoyo Wardaya
    • 1
    • 2
  1. 1.Diponegoro UniversitySemarangIndonesia
  2. 2.Master Program in Energy, School of Postgraduate Studies (SPS)Diponegoro UniversitySemarangIndonesia

Personalised recommendations