Skip to main content
Log in

Transversely Excited Atmospheric CO2 Laser-Induced Plasma Spectroscopy for the Detection of Heavy Metals in Soil

  • Published:
Journal of Applied Spectroscopy Aims and scope

A rapid detection of heavy metals in soil was presented by the metal-assisted gas plasma method using specific characteristics of a pulsed, transversely excited atmospheric (TEA) CO2 laser. The soil particles were placed in a hole made of acrylic plate. The sample was covered by a to prevent the soil particles from being blown off. The mesh also functioned to initiate a luminous plasma. When a TEA CO2 laser (1500 mJ, 200 ns) was focused on the soil sample, passing through the metal mesh, some of the laser energy was used to generate the gas plasma on the mesh surface, and the remaining laser energy was employed to ablate the soil particles. The fine, ablated soil particles moved into the gas plasma region to be dissociated and excited. Using this technique, analysis can be made with reduced sample pretreatment, and therefore a rapid analysis can be performed efficiently. The results proved that the signal to noise ratio (S/N) of the emission spectral lines is much better for the case of the present method (mesh method) compared to the case of standard laser-induced breakdown spectroscopy using the pellet method. Rapid detection of heavy metal elements in soil has been successfully carried out. The detection limits of Cu and Hg in soil were estimated to be 3 and 10 mg/kg, respectively. The present method has good potential for rapid and sensitive detection of heavy metals in soil samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N. Nanos and J. A. R. Martin, Geoderma, 189190, 554–562 (2012).

  2. Q. Zhang, J. Ye, J. Chen, H. Xu, C. Wang, and M. Zhao, Environ. Pollut., 185, 258–265 (2014).

    Article  Google Scholar 

  3. X. Liu, Q. Song, Y. Tang, J. Xu, J. Wu, F. Wang, and P. C. Brookes, Sci. Total Environ., 463464, 530–540 (2013).

  4. Z. Li, Z. Ma, T. J. v. d. Kuijp, Z. Yuan, and L. Huang, Sci. Total Environ., 468469, 843–853 (2014).

  5. L. A. Hutton, G. D. O’Neil, T. L. Read, Z. J. Ayrest, M. E. Newton, and J. V. Macpherson, Anal. Chem., 86, 4566–4572 (2014)

    Article  Google Scholar 

  6. J. Q. McComb, C. Rogers, F. X. Han, and P. B. Tchounwou, Water, Air, Soil Pollut., 225, 2169 (2014).

    Article  Google Scholar 

  7. J. Zhao, X. Yan, T. Zhou, J. Wang, H. Li, P. Zhang, H. Ding, and L. Ding, J. Anal. At. Spectrom., 30, 1920–1926 (2015).

    Article  Google Scholar 

  8. K. Rifai, S. Laville, F. Vidal, M. Sabsabi, and M. Chaker, J. Anal. At. Spectrom., 27, 276–283 (2012).

    Article  Google Scholar 

  9. E. M. Cahoon and J. R. Almirall, Anal. Chem., 84, 2239–2244 (2012).

    Article  Google Scholar 

  10. C. M. Li, Z. M. Zou, X. Y. Yang, Z. Q. Hao, L. B. Guo, X. Y. Li, Y. F. Lu, and X. Y. Zeng, J. Anal. At. Spectrom., 29, 1432–1437 (2014).

    Article  Google Scholar 

  11. P. Yaroshchyk, D. L. Death, and S. J. Spencer, J. Anal. At. Spectrom., 27, 92–98 (2012).

    Article  Google Scholar 

  12. A. K. Myakalwar, S. Sreedhar, I. Barman, N. C. Dingari, S. V. Rao, P. P. Kiran, S. P. Tewari, and G. M. Kumar, Talanta, 87, 53–59 (2011).

    Article  Google Scholar 

  13. E. M. Cahoon and J. R. Almirall, Appl. Opt., 49, C49–C57 (2010).

    Article  Google Scholar 

  14. D. A. Cremers and L. J. Radziemski, Handbook of Laser-Induced Breakdown Spectroscopy, John Wiley and Sons, Ltd., Chichester (2006).

    Book  Google Scholar 

  15. A. W. Miziolek, V. Palleschi, and I. Schechter, Laser-Induced Breakdown Spectroscopy (LIBS): Fundamentals and Applications, Cambridge University Press (2006).

  16. S. C. Jantzi and J. R. Almirall, Anal. Bioanal. Chem., 400, 3341–3351 (2011).

    Article  Google Scholar 

  17. V. S. Burakov, S. N. Raikov, N. V. Tarasenko, M. V. Belkov, and V. V. Kiris, J. Appl. Spectrosc., 77, 595–608 (2010).

    Article  ADS  Google Scholar 

  18. M. Dell’Aglio, R. Gaudiuso, G. S. Senesi, A. D. Giacomo, C. Zaccone, T. M. Miano, and O. D. Pascale, J. Environ. Monit., 13, 1422–1426 (2011).

    Article  Google Scholar 

  19. E. C. Ferreira, J. A. G. Neto, D. M. B. P. Milori, and E. J. Ferreira, Spectrochim. Acta B, 110, 96–99 (2015).

    Article  ADS  Google Scholar 

  20. A. M. Popov, M. O. Kozhnov, S. M. Zaytsev, N. B. Zorov, and T. A. Labutin, J. Appl. Spectrosc., 82, 739–743 (2015).

    Article  ADS  Google Scholar 

  21. A. Khumaeni, Z. S. Lie, Y. I. Lee, K. Kurihara, K. Kagawa, and H. Niki, Appl. Spectrosc., 65, 236–241 (2011).

    Article  ADS  Google Scholar 

  22. A. Khumaeni, H. Niki, K. Fukumoto, Y. Deguchi, K. Kurihara, K. Kagawa, and Y. I. Lee, Curr. Appl. Phys., 11, 423–427 (2011).

    Article  ADS  Google Scholar 

  23. A. Khumaeni, Z. S. Lie, W. Setiabudi, K. H. Kurniawan, and K. Kagawa, J. Phys.: Conf. Ser., 622, 012057 (2015).

    Google Scholar 

  24. M. Ramli, N. Idris, H. Niki, K. H. Kurniawan, and K. Kagawa, Jpn. J. Appl. Phys., 47, 688–694 (2008).

    Article  Google Scholar 

  25. A. Khumaeni, Z. S. Lie, H. Niki, Y. I. Lee, K. Kurihara, M. Wakasugi, T. Takahashi, and K. Kagawa, Appl. Opt., 51, B121–B129 (2012).

    Article  Google Scholar 

  26. A. Khumaeni, Z. S. Lie, Y. I. Lee, K. Kurihara, K. H. Kurniawan, K. Fukumoto, K. Kagawa, and H. Niki, Jpn. J. Appl. Phys., 51, 082403 1–9 (2012).

    Google Scholar 

  27. J. D. Ingle Jr. and S. R. Crouch, Spectrochemical Analysis, Prentice Hall, New Jersey (1988).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Khumaeni.

Additional information

Abstract of article is published in Zhurnal Prikladnoi Spektroskopii, Vol. 84, No. 6, p. 1016, November–December, 2017.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khumaeni, A., Sugito, H., Setia Budi, W. et al. Transversely Excited Atmospheric CO2 Laser-Induced Plasma Spectroscopy for the Detection of Heavy Metals in Soil. J Appl Spectrosc 84, 1108–1113 (2018). https://doi.org/10.1007/s10812-018-0595-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10812-018-0595-7

Keywords

Navigation