Journal of Applied Spectroscopy

, Volume 84, Issue 6, pp 1098–1107 | Cite as

Quantum Chemical Calculations of the Spectroscopic Properties and Nonlinear Optical Activity of 2,6-Dibromo-3-Chloro-4-Fluoroaniline


The Fourier transform infrared (FT-IR) and Fourier transform Raman (FT-Raman) spectra of 2,6-dibromo-3-chloro-4-fluoroaniline in the solid phase were recorded and analyzed. Quantum chemical calculations of the optimized molecular structure, energies, nonlinear optical (NLO) analysis, molecular surfaces, and vibrational analysis of this substance were performed. The obtained results on the geometric structure and vibrational frequencies were compared with the observed data. The calculated highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) energies also confirm that charge transfer occurs within the molecule. The detailed vibrational assignments were performed using the HF and DFT calculations, and the potential energy distribution (PED) was obtained by the vibrational energy distribution analysis (VEDA4) program. Finally, the effects of the amino, bromo, chloro, and fluoro substituents on the vibrational frequencies were investigated.


quantum chemical calculations nonlinear optical analysis infrared spectroscopy Raman spectroscopy 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J. Whysner, L. Vera, and G. M. Williams, Pharmacol. Ther., 71, 107–112 (1996).CrossRefGoogle Scholar
  2. 2.
    H. Tanak, J. Mol. Struct. (Theochem), 905, 5–12 (2010).CrossRefGoogle Scholar
  3. 3.
    M. E. Vaschetto, B. A. Retamal, and A. P. Monkman, J. Mol. Struct. (Theochem), 468, 209–221 (1996).CrossRefGoogle Scholar
  4. 4.
    M. Kubota and S. Ohba, Acta Crystallogr. B: Struct. Sci., 48, 849–854 (1992).CrossRefGoogle Scholar
  5. 5.
    B. K. Sarojini, B. Narayana, H. S. Yathirajan, T. Gerber, B. van Brecht, and R. Betz, Acta Crystallogr. E: Struct. Rep., 69, 240–248 (2013).CrossRefGoogle Scholar
  6. 6.
    R. D. Willett, Inorg. Chem., 40, 966–971 (2001).CrossRefGoogle Scholar
  7. 7.
    C. Glidewell, J. N. Low, J. M. S. Skakle, and J. L. Wardell, Acta Crystallogr. C: Cryst. Struct. Commun., 61, 336–338 (2005).CrossRefGoogle Scholar
  8. 8.
    U. S. Ali, W. A. Siddiqui, A. Ashraf, and M. N. Tahir, Acta Crystallogr. E: Struct. Rep. Online, 68, 1904–1909 (2012).CrossRefGoogle Scholar
  9. 9.
    R. Betz, Crystallogr. Rep., 60, 1049–1052 (2015).ADSCrossRefGoogle Scholar
  10. 10.
    Gaussian 09, Revision A.11.4, Gaussian, Inc., Wallingford CT (2009).Google Scholar
  11. 11.
    GaussView, Version 5.0.9, Semichem. Inc., Shawnee Mission KS (2009).Google Scholar
  12. 12.
    A. D. Becke, J. Chem. Phys., 98, 5648–5652 (1993).ADSCrossRefGoogle Scholar
  13. 13.
    C. Lee, W. Yang, and R. G. Parr, Phys. Rev. B, 37, 785–789 (1988).ADSCrossRefGoogle Scholar
  14. 14.
    M. H. Jamroz, Vibrational Energy Distribition Analysis (VEDA 4) Program, Warsaw, Poland (2004).Google Scholar
  15. 15.
    M. Bakiler, I. V. Maslov, and S. Akyüz, J. Mol. Struct., 482, 379–383 (1999).ADSCrossRefGoogle Scholar
  16. 16.
    M. Bakiler, I. V. Maslov, and S. Akyüz, J. Mol. Struct., 475, 83–92 (1999).ADSCrossRefGoogle Scholar
  17. 17.
    E. Kavitha, N. Sundaraganesa, and S. Sebastian, Indian J. Pure Appl. Phys., 48, 20–30 (2010).Google Scholar
  18. 18.
    L.E. Sutton, Tables of Interatomic Distances, Chemical Society, London (1958).Google Scholar
  19. 19.
    R. G. Pearson, Proc. Natl. Acad. Sci. USA, 83, 8440–8441 (1986).ADSCrossRefGoogle Scholar
  20. 20.
    M. Karelson, V. S. Lobanov, and A. R. Katritzky, Chem. Rev., 96, 1027–1044 (1996).CrossRefGoogle Scholar
  21. 21.
    T. C. Koopmans, Physica (Amsterdam), 1, 104–112 (1934).ADSCrossRefGoogle Scholar
  22. 22.
    Chemical Application of Atomic and Molecular Electrostatic Potentials, Eds. P. Politzer, D. G. Truhlar, Plenum Press, New York (1981).Google Scholar
  23. 23.
    C. Andraud, T. Brotin, C. Garcia, F. Pelle, P. Goldner, B. Bigot, and A. Collet, J. Am. Chem. Soc., 116, 2094–2103 (1994).CrossRefGoogle Scholar
  24. 24.
    J. P. Abraham, D. Sajan, I. H. Joe, and V. S. Jayakumar, Spectrochim. Acta A, 71, 355–367 (2008).ADSCrossRefGoogle Scholar
  25. 25.
    P. Karamanis, C. Pouchan, and G. Maroulis, Phys. Rev. A, 77, 013201–013203 (2008).ADSCrossRefGoogle Scholar
  26. 26.
    S. G. Sağdinc and A. Eşme, Spectrochim. Acta A, 75, 1370–1376 (2010).ADSCrossRefGoogle Scholar
  27. 27.
    Ü. Ceylan, G. Ö. Tarı, H. Gökçe, and E. Ağar, J. Mol. Struct., 1, 1110–1122 (2016).Google Scholar
  28. 28.
    V. Arjunan and S. Mohan, J. Mol. Struct., 892, 289–299 (2008).ADSCrossRefGoogle Scholar
  29. 29.
    V. Arjunan and S. Mohan, Spectrochim. Acta A, 72A, 436–444 (2009).ADSCrossRefGoogle Scholar
  30. 30.
    H. F. Hameka and J. O. Jensen, J. Mol. Struct. (Theochem), 362, 325–330 (1996).CrossRefGoogle Scholar
  31. 31.
    J. O. Jensen, A. Banerjee, C. N. Merrow, D. Zeroka, and J. M. Lochner, J. Mol. Struct. (Theochem), 531, 323–331 (2000).CrossRefGoogle Scholar
  32. 32.
    A. P. Scott and L. Radom, J. Phys. Chem., 100, 16502–16513 (1996).CrossRefGoogle Scholar
  33. 33.
    M. P. Andersson and P. Uvdal, J. Chem. Phys. A, 109, 2937–2941 (2005).Google Scholar
  34. 34.
    M. Alcolea Palafox, M. Gill, N. J. Nunez, V. K. Rastogi, and L. Mittal, Int. J. Quant. Chem., 103, 394–421 (2005).ADSCrossRefGoogle Scholar
  35. 35.
    M. Alcolea Palafox, Int. J. Quant. Chem., 77, 661–684 (2000).CrossRefGoogle Scholar
  36. 36.
    V. Arjunan, P. Ravindran, T. Rani, and S. Mohan, J. Mol. Struct., 988, 91–101 (2011).ADSCrossRefGoogle Scholar
  37. 37.
    V. Arjunan, P. S. Balamourougane, C. V. Mythili, S. Mohan, and V. Nandhakumar, J. Mol. Struct., 1006, 247–258 (2011).ADSCrossRefGoogle Scholar
  38. 38.
    S. Muthu and A. Prabakaran, Spectrochim. Acta A, 121, 420–429 (2014).ADSCrossRefGoogle Scholar
  39. 39.
    M. M. El-Nahass, M. A. Kamel, A. F. El-deeb, A. A. Atta, and S. Y. Huthaily, Spectrochim. Acta A, 79, 443–450 (2011).ADSCrossRefGoogle Scholar
  40. 40.
    H. Singh, S. Singh, A. Srivastava, P. Tandon, P. Bharti, S. Kumar, and R. Maurya, Spectrochim. Acta A, 120, 405–415 (2014).CrossRefGoogle Scholar
  41. 41.
    E. F. Mooney, Spectrochim. Acta A, 20, 1021–1032 (1964).CrossRefGoogle Scholar
  42. 42.
    C. S. Hiremath, J. Yenagi, and J. Tonannavar, Spectrochim. Acta A, 68, 710–717 (2007).ADSCrossRefGoogle Scholar
  43. 43.
    G. Socrates, Infrared Characteristic Group Frequencies, John Wiley, GB (1980).Google Scholar
  44. 44.
    S. Guidara, H Feki, and Y. Abid, Spectrochim. Acta A, 133, 856–866 (2015).ADSCrossRefGoogle Scholar
  45. 45.
    P. M. Wojciechowski, W. Zierkiewicz, D. Michalska, and P. Hobza, J. Chem. Phys., 118, 1090–1092 (2003).CrossRefGoogle Scholar
  46. 46.
    S. Muthu and J. Uma Maheswari, Spectrochim. Acta A, 92, 154–163 (2012).ADSCrossRefGoogle Scholar
  47. 47.
    X. Song, M. Yang, E. R. Davidson, and J. P. Reilly, J. Chem. Phys., 99, 3224–3233 (1993).ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Kocaeli UniversityUmuttepeTurkey

Personalised recommendations