Advertisement

Journal of Applied Spectroscopy

, Volume 84, Issue 6, pp 1089–1097 | Cite as

Synthesis and Characterization of a Novel Ligand and Spectroscopic Study of the Formation of its Complexes with Different Cations and Their Sensory Characteristics

  • M. Shariati-Rad
  • M. Karimi
  • M. Rezaeivala
Article

A new ligand (L), N,N′-bis(2-hydroxybenzyl)-1,2-diaminoethane, was synthesized and characterized. The sensing behavior of L toward various metal ions was investigated by spectrofluorometric and UV-Vis spectrophotometric methods. The sensor displayed selective and sensitive recognition toward Fe3+ and Fe2+ in acetonitrile. The fluorescence of L was quenched mainly by Fe3+, and a considerable enhancement of fluorescence was observed in the presence of Zn2+. Using multivariate hard modeling and stoichiometry, the concentration, spectral profiles, and formation constants of the studied complexes were calculated.

Keywords

spectrofluorometric spectrophotometric hard-modelling formation constant 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. P. D. Silva, H. Q. N. Gunaratne, T. Gunnlaugsson, A. J. M. Huxley, C. P. McCoy, and J. T. Rademacher, Chem. Rev., 97, 1515 (1997).CrossRefGoogle Scholar
  2. 2.
    W. T. Mason, Fluorescent and Luminescent Probes for Biological Activity, Academic Press, San Diego (1999).Google Scholar
  3. 3.
    S. R. Liu and S. P. Wu, Sens. Actuators B, 171, 1110 (2012).CrossRefGoogle Scholar
  4. 4.
    Z. J. Jiang, H. S. Lv, J. Zhu, and B. X. Zhao, Synth. Met., 162, 2112 (2012).CrossRefGoogle Scholar
  5. 5.
    R. Azadbakht, H. Keypour, H. Amiri Rudbari, A. H. Mohammad Zaheri, and S. Menati, J. Lumin., 132, 1860 (2012).Google Scholar
  6. 6.
    X. Wang, W. Zheng, H. Lin, G. Liu, Y. Chen, and Y. Fang, J. Tetrahedron Lett., 50, 1536 (2009).CrossRefGoogle Scholar
  7. 7.
    P. S. Hariharan, N. Hari, and S. P. Anthony, Inorg. Chem. Commun., 48, 1 (2014).CrossRefGoogle Scholar
  8. 8.
    Y. Liu, E.-B. Yang, R. Han, D. Zhang, Y. Ye, and Y.-F. Zhao, Chin. Chem. Lett., 25, 1065 (2014).CrossRefGoogle Scholar
  9. 9.
    R. Azadbakht, T. Almasi, H. Keypour, and M. Rezaeivala, Inorg. Chem. Commun., 33, 63 (2013).CrossRefGoogle Scholar
  10. 10.
    C. Y. Li, Y. Zhoua, Y. F. Li, X. F. Kong, C. X. Zou, and C. Weng, Anal. Chim. Acta, 774, 79 (2013).CrossRefGoogle Scholar
  11. 11.
    R. Martínez-Máñez and F. Sancenón, Coord. Chem. Rev., 250, 3081 (2006).CrossRefGoogle Scholar
  12. 12.
    M. Vazquez, L. Fabbrizzi, A. Taglietti, R. M. Pedrido, A. M. Gonzalez-Noya, and M. R. Bermejo, Angew. Chem. Int. Ed., 44, 1962 (2004).Google Scholar
  13. 13.
    J. V. Ros-Lis, R. Martínez-Máñez, and Soto, J. Org. Lett., 7, 2337 (2005).Google Scholar
  14. 14.
    T. Gunnlaugsson, M. Glynn, G. M. Tocci, P. E. Kruger, and F. M. Pfeffer, Coord. Chem. Rev., 250, 3094 (2006).CrossRefGoogle Scholar
  15. 15.
    G. Sivaraman, V. Sathiyaraja, and D. Chellappa, J. Lumin., 145, 480 (2014).CrossRefGoogle Scholar
  16. 16.
    M. W. Henze, M. U. Muckenthaler, B. Galy, and C. Camaschella, Cell, 142, 24 (2010).CrossRefGoogle Scholar
  17. 17.
    X. F. Liu and E. C. Theil, Acc. Chem. Res., 38, 167 (2005).CrossRefGoogle Scholar
  18. 18.
    C. A. Perez, Y. Tong, and M. Guo, Cur. Bioact. Compd., 4, 150 (2008).CrossRefGoogle Scholar
  19. 19.
    M. José Casanueva Marenco, C. Fowley, B. W. Hyland, G. R.C. Hamilton, D. Galindo-Riaño, and J. F. Callan, Tetrahedron Lett., 53, 670 (2012).CrossRefGoogle Scholar
  20. 20.
    A. F. Oliverra, J. A. Nobrega, and O. Fatibello-Filho, Talanta, 49, 505 (1995).CrossRefGoogle Scholar
  21. 21.
    W. Qin, Z. J. Zhang, and F. C. Wang, Fresenius J. Anal. Chem., 360, 130 (1998).CrossRefGoogle Scholar
  22. 22.
    J. M. T.Carneiro, A. C. B. Dias, E. A. G. Zagatto, and R.S. Honorato, Anal. Chim. Acta, 455, 327 (2002).CrossRefGoogle Scholar
  23. 23.
    A. Safavi, H. Abdollahi, and M. R. Hormozi-Nezhad, Talanta, 56, 699 (2002).CrossRefGoogle Scholar
  24. 24.
    B. M. Nagabhushana, G. T. Chandrappa, B. Nagappa, and N. H. Nagaraj, Anal. Bioanal. Chem., 373, 299 (2002).CrossRefGoogle Scholar
  25. 25.
    J. Zolgharnein, H. Abdollahi, D. Jaefarifar, and G. H. Azimi, Talanta, 57, 1067 (2002).CrossRefGoogle Scholar
  26. 26.
    L. Donga, C. Wu, X. Zeng, L. Mu, S. F. Xue, Z. Tao, and J. X. Zhang, Sens. Actuators B, 145, 433 (2010).CrossRefGoogle Scholar
  27. 27.
    E. M. Nolan and S. J. Lippard, Acc. Chem. Res., 42, 193 (2009).CrossRefGoogle Scholar
  28. 28.
    S. J. Lippard and J. M. Berg, Principles of Bioinorganic Chemistry, University Science Book, Mill Valley, CA, 10, 14, 78–183 (1994).Google Scholar
  29. 29.
    B. L. Vallee and K. H. Falchuk, Physiol. Rev., 73, 79 (1993).CrossRefGoogle Scholar
  30. 30.
    J. J. R. F. de Silva and R. J. P. Williams, The Biological Chemistry of Elements: the Inorganic Chemistry of Life, 2nd ed., Oxford University Press, New York (2001).Google Scholar
  31. 31.
    A. I. Bush, W. H. Pettingell, G. Multhaup, M. Paradis, J. P. Vonsattel, J. F. Gusella, K. Beyreuther, C. L. Masters, and R.E. Tanzi, Science, 265, 1464 (1994).ADSCrossRefGoogle Scholar
  32. 32.
    J. Y. Koh, S. W. Suh, B. J. Gwag, Y. Y. He, C. Y. Hsu, and D.W. Choi, Science, 272, 1013 (1996).ADSCrossRefGoogle Scholar
  33. 33.
    C. F. Walker and R. E. Black, Annu. Rev. Nutr., 24, 255 (2004).CrossRefGoogle Scholar
  34. 34.
    E. M. Nolan and S. J. Lippard, Inorg. Chem., 43, 8310 (2004).CrossRefGoogle Scholar
  35. 35.
    E. M. Nolan, S. C. Burdette, J. H. Hervey, S. A. Hilderbrand, and S. J. Lippard, Inorg. Chem., 43, 2624 (2004).CrossRefGoogle Scholar
  36. 36.
    S. Aoki, D. Kagata, M. Shiro, K. Takeda, and E. Kimura, J. Am. Chem. Soc., 126, 13377 (2004).Google Scholar
  37. 37.
    R. Parkesh, T. C. Lee, and T. Gunnlaugsson, Org. Biomol. Chem., 5, 310 (2007).CrossRefGoogle Scholar
  38. 38.
    M. Maeder and Y.-M. Neuhold, Practical Data Analysis in Chemistry, Elsevier, Amsterdam (2007).Google Scholar
  39. 39.
    M. Maeder and H. Abdollahi, J. Iran. Chem. Soc., 5, 522 (2008).CrossRefGoogle Scholar
  40. 40.
    H. S. Jung, P. S. Kwon, J. W. Lee, J. I. Kim, C. S. Hong, J. W. Kim, S. Yan, J. Y. Lee, J. H. Lee, T. Joo, and J. S. Kim, Chem. Soc., 131, 2008 (2009).Google Scholar
  41. 41.
    G. E. Malashkevich, M. V. Korzhik, M. G. Livshits, V. B. Pavlenko, A. L. Blinov, and M. A. Borik, The Sov. J. Glass Phys. Chem., 15, 397 (1990).Google Scholar
  42. 42.
    J. P. Sumner and R. Kopelman, Analyst, 130, 528 (2005).ADSCrossRefGoogle Scholar
  43. 43.
    Y. Ma, W. Luo, P. J. Quinn, Z. Liu, and R. C. Hider, J. Med. Chem., 47, 6349 (2004).CrossRefGoogle Scholar
  44. 44.
    J. M. Liu, Q. Y. Zheng, J. L. Yang, C. F. Chen, and Z. T. Huang, Tetrahedron Lett., 43, 9209 (2002).CrossRefGoogle Scholar
  45. 45.
    G. Puxty, M. Maeder, and K. Hungerbühler, Chemom. Intell. Lab. Syst., 81, 149 (2006).CrossRefGoogle Scholar
  46. 46.
    N. McCann and M. Maeder, Anal. Chim. Acta, 647, 31 (2009).CrossRefGoogle Scholar
  47. 47.
    M. Shariati-Rad and M. Hasani, Anal. Chim. Acta, 648, 60 (2009).CrossRefGoogle Scholar
  48. 48.
    Y. W. Choi, G. J. Park, Y. J. Na, H. Y. Jo, S. A. Lee, G. R. You, and C. Kim, Sens. Actuators B, 194, 343 (2014).CrossRefGoogle Scholar
  49. 49.
    W. Zhu, L. Yang, M. Fang, Z. Wu, Q. Zhang, F. Yin, Q. Huang, and C. Li, J. Lumin., 158, 38 (2015).CrossRefGoogle Scholar
  50. 50.
    S. Devaraj, Y. K. Tsui, C. Y. Chiang, and Y. P. Yen, Spectrochim. Acta A, 96, 594 (2012).ADSCrossRefGoogle Scholar
  51. 51.
    L. Wang, H. Li, and D. Cao, Sens. Actuators B, 181, 749 (2013).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Razi University, Department of Analytical ChemistryFaculty of ChemistryKermanshahIran
  2. 2.Department of Chemical EngineeringHamedan University of TechnologyHamedanIran

Personalised recommendations