Advertisement

Journal of Applied Spectroscopy

, Volume 84, Issue 6, pp 1084–1088 | Cite as

Rapid Determination of Trace Palladium in Active Pharmaceutical Ingredients by Magnetic Solid-Phase Extraction and Flame Atomic Absorption Spectrometry

  • Q. H. Yin
  • D. M. Zhu
  • D. Z. Yang
  • Q. F. Hu
  • Y. L. Yang
Article
  • 36 Downloads

Clutaraldehyde cross-linked magnetic chitosan nanoparticles were synthesized and used as an adsorbent for the dispersive solid-phase extraction of palladium in active pharmaceutical ingredients (APIs) prior to analysis by a flame atomic absorption spectrophotometer. FT-IR, X-ray diffraction, and TEM were used to characterize the adsorbent. Various parameters of experimental performance, such as adsorbent amount, pH, adsorption time, desorption solutions, coexisting ions, and adsorbent reusability, were investigated and optimized. Under the optimized conditions, good linearity was achieved in the 5.0–500 μg/L concentration range, with correlation coefficients of 0.9989. The limit of detection is 2.8 μg/L and the recoveries of spiked samples ranged from 91.7 to 97.6%. It was confirmed that the GMCNs nanocomposite was a promising adsorbing material for extraction and preconcentration of Pd in APIs.

Key words

ma gnetic solid-phase extraction palladium flame atomic absorption spectrometry 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. Recho, R. J. G. Black, C. North, J. E. Ward, and R. D. Wilkes, Org. Process Res. Dev., 18, 626–635 (2014).CrossRefGoogle Scholar
  2. 2.
    C. R. M. Rao and G. S. Reddi, Trends. Anal. Chem., 19, 565–586 (2000).CrossRefGoogle Scholar
  3. 3.
    K. Ravindra, L. Bencs, and R. V. Grieken, Sci. Total Environ., 318, 1–43 (2004).ADSCrossRefGoogle Scholar
  4. 4.
    S. Rastegarzadeh, N. Pourreza, A. R. Kiasat, and H. Yahyavi, Microchim. Acta, 170, 135–140 (2010).CrossRefGoogle Scholar
  5. 5.
    E. Najafi, O. Sadeghi, N. Tavassoli, P. Mirahmadpour, and H. R. Lotfi, Anal. Sci., 26, 479–483 (2010).CrossRefGoogle Scholar
  6. 6.
    C. Yuan, Y. Zhang, S. Wang, and A. Chang, Microchim. Acta, 173, 361–367 (2011).CrossRefGoogle Scholar
  7. 7.
    M. A. Karimi, A. Hatefi-Mehrjardi, and M. Kafi, J. Chil. Chem. Soc., 59, 2248–2251 (2014).CrossRefGoogle Scholar
  8. 8.
    C. Bao, Z. Li, K. Zhang, Q. Shun, and Y. Chen, Microchem. J., 54, 1–7 (1996).CrossRefGoogle Scholar
  9. 9.
    A. A. Ensafi and H. Eskandari, Microchem. J., 63, 266–275 (1999).CrossRefGoogle Scholar
  10. 10.
    D. L. G. Borges, M. A. M. Veiga, V. L. A. Frescura, B. Welz, and A. J. Curtius, J. Anal. At. Spectrom., 18, 501–507 (2003).CrossRefGoogle Scholar
  11. 11.
    E. Z. Jahromi, A. Bidari, Y. Assadi, M. R. M. Hosseini, and M. R. Jamali, Anal. Chim. Acta, 585, 305–311 (2007).CrossRefGoogle Scholar
  12. 12.
    T. M. Malyutina, T. Y. Alekseeva, A. V. Dyachkova, G. S. Kudryavtseva, L. D. Berliner, and Y. A. Karpov, Inorg. Mater., 46, 1479–1482 (2010).CrossRefGoogle Scholar
  13. 13.
    M. Imamoglu, A. O. Aydin, and M. S. Dundar, Cent. Eur. J. Chem., 3, 252–262 (2005).Google Scholar
  14. 14.
    M. V. Krishna, M. Ranjit, K. Chandrasekaran, G. Venkateswarlu, and D. Karunasagar, Talanta, 79, 1454–1463 (2009).CrossRefGoogle Scholar
  15. 15.
    K. V. Meel, A. Smekens, M. Behets, P. Kazandjian, and R.V. Grieken, Anal. Chem., 79, 6383–6389 (2007).CrossRefGoogle Scholar
  16. 16.
    T. A. Kokya and K. Farhadi, J. Hazard. Mater., 169, 726–733 (2009).CrossRefGoogle Scholar
  17. 17.
    M. Pouyan, G. Bagherian, and N. Goudarzi, Microchem. J., 127, 46–51 (2016).CrossRefGoogle Scholar
  18. 18.
    M. Shamsipur, M. Ramezani, and M. Sadeghi, Microchim. Acta, 166, 235–242 (2009).CrossRefGoogle Scholar
  19. 19.
    M. Mohamadi and A. Mostafavi, Talanta, 81, 309–313 (2010).CrossRefGoogle Scholar
  20. 20.
    N. K. Lazaridis, G. Z. Kyzas, A. A. Vassiliou, and D. N. Bikiaris, Langmuir, 23, 7634–7643 (2007).CrossRefGoogle Scholar
  21. 21.
    H. Bao, L. Li, L. H. Gan, Y. Ping, J. Li, and P. Ravi, Macromolecules, 43, 5679–5687 (2010).ADSCrossRefGoogle Scholar
  22. 22.
    D. Xiao, RSC Adv., 110, 64843–64854 (2014).CrossRefGoogle Scholar
  23. 23.
    Z. Zhou, S. Lin, T. Yue, and T. C. Lee, J. Food Eng., 126, 133–141 (2014).CrossRefGoogle Scholar
  24. 24.
    A. A. Kadam and D. S. Lee, Bioresource Technol., 193, 563–567 (2015).CrossRefGoogle Scholar
  25. 25.
    Y. Liu, L. Chen, Y. Yang, and Y. Dong, J. Mol. Liq., 219, 341–349 (2016).CrossRefGoogle Scholar
  26. 26.
    T. S. Anirudhan and S. Rijith, Colloid Surface A, 351, 52–59 (2009).CrossRefGoogle Scholar
  27. 27.
    M. Ruiz, A. M. Sastre, and E. Guibal, Funct. Polym., 45, 155–173 (2000).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Q. H. Yin
    • 1
    • 2
  • D. M. Zhu
    • 1
  • D. Z. Yang
    • 1
  • Q. F. Hu
    • 3
  • Y. L. Yang
    • 1
  1. 1.Kunming University of Science and TechnologyKunmingChina
  2. 2.Kunming Jida Pharmaceutical Co., LtdKunmingChina
  3. 3.School of Ethnic MedicineYunnan Nationalities UniversityKunmingChina

Personalised recommendations