Journal of Applied Spectroscopy

, Volume 84, Issue 6, pp 1056–1060 | Cite as

Photoelectric Properties of Film Composites Based on Poly(Vinyl Butyral) and Heterometallic Complexes

  • N. A. Davidenko
  • V. N. Kokozay
  • S. L. Studzinsky
  • S. R. Petrusenko
  • N. I. Plyuta
  • I. I. Davidenko

Photosensitive polymeric film composites based on nonphotoconducting poly(vinyl butyral) doped with heterometallic Cu/M complexes (M = Ca, Sr) were synthesized and investigated. These composites possessed photoconducting and photovoltaic properties and electron-type photoconductivity. The greater photocurrent for composites with complexes having shorter distances between the nearest Cu metal centers was attributed to the greater probability of electron transfer between these centers.


polymeric film composites heterometallic complexes photoconductivity photovoltaic effect photogeneration electron transfer charge-carrier capture 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    S. Ohkoshi, H. Tokoro, T. Hozumi, and Y. Zhang, J. Am. Chem. Soc., 128, No. 1, 270–277 (2006).CrossRefGoogle Scholar
  2. 2.
    J. M. Herrera, V. Marvaud, M. Verdaguer, J. Marrot, M. Kalisz, and C. Mathoniere, Angew. Chem. Int. Ed., 43, No. 41, 5468–5471 (2004).CrossRefGoogle Scholar
  3. 3.
    B. J. Coe and N. R. M. Curati, Comments Inorg. Chem., 25, Nos. 5–6, 147–184 (2004).CrossRefGoogle Scholar
  4. 4.
    L. Li, S.-Y. Niu, J. Jin, Q. Meng, Y.-X. Chi, Y.-H. Xing, and G.-N. Zhang, J. Solid State Chem., 184, 1279–1285 (2011).ADSCrossRefGoogle Scholar
  5. 5.
    M. Liao, Y. Koide, and J. Alvarez, Phys. Rev. B: Condens. Matter Mater. Phys., 78, 045112–045116 (2008).ADSCrossRefGoogle Scholar
  6. 6.
    P.-C. Wei, S. Chattopadhyay, M.-D. Yang, J.-L. Shen, C.-Y. Lu, H.-C. Shih, L.-C. Chen, and K.-H. Chen, Phys. Rev. B: Condens. Matter Mater. Phys., 81, 045306–045310 (2010).ADSCrossRefGoogle Scholar
  7. 7.
    N. S. Allen (Ed.), Photochemistry and Photophysics of Polymeric Materials, John Wiley & Sons, Inc., Hoboken (2010).Google Scholar
  8. 8.
    K. Mertens and G. Roth, Photovoltaics: Fundamentals, Technology and Practice, Wiley, Chichester, England (2014).Google Scholar
  9. 9.
    N. A. Davidenko, I. I. Davidenko, V. N. Kokozei, S. L. Studzinskii, S. R. Petrusenko, and N. I. Plyuta, Zh. Prikl. Spektrosk., 82, No. 5, 692–696 (2015) [N. A. Davidenko, I. I. Davidenko, V. N. Kokozay, S. L. Studzinsky, S. R. Petrusenko, and N. I. Plyuta, J. Appl. Spectrosc., 82, No. 5, 750–754 (2015)].Google Scholar
  10. 10.
    M. Nonnenmacher, M. P. O’Boyle, and H. K. Wichramasinghe, Appl. Phys. Lett., 58, 2921–2923 (1991).ADSCrossRefGoogle Scholar
  11. 11.
    T. Blythe and D. Bloor, Electrical Properties of Polymers, CUP, Cambridge, UK (2005).Google Scholar
  12. 12.
    N. A. Davidenko, V. N. Kokozei, M. V. Pavlyuk, V. G. Makhan’kova, S. L. Studzinskii, and I. I. Davidenko, Khim. Vys. Energ., 46, No. 4, 277–279 (2012).Google Scholar
  13. 13.
    N. A. Davidenko, V. N. Kokozei, M. V. Pavlyuk, V. G. Makhan’kova, S. L. Studzinskii, and I. I. Davidenko, Zh. Prikl. Spektrosk., 80, No. 2, 252–256 (2013) [N. A. Davidenko, V. N. Kokozay, M. V. Pavliuk, V. G. Makhankova, S. L. Studzinsky, and I. I. Davidenko, J. Appl. Spectrosc., 80, 244–248 (2013)].Google Scholar
  14. 14.
    M. Lampert and P. Mark, Current Injection in Solids, Academic Press, New York and London (1970).Google Scholar
  15. 15.
    V. G. Shevchenko and A. T. Ponomarenko, Usp. Khim., LII, No. 8, 1336–1349 (1983).Google Scholar
  16. 16.
    W. Brutting (Ed.), Physics of Organic Semiconductors, Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim (2012).Google Scholar
  17. 17.
    V. Balzani (Ed.), Electron Transfer in Chemistry, Vol. 5, Wiley-VCH, Weinheim–New York (2001).Google Scholar
  18. 18.
    D. M. Roundhill, Photochemistry and Photophysics of Metal Complexes, Springer, New York (2013).Google Scholar
  19. 19.
    M. Pope and C. E. Swenberg, Electronic Processes in Organic Crystals and Polymers, Oxford University Press, (1999).Google Scholar
  20. 20.
    N. A. Davidenko, S. V. Dekhtyarenko, V. N. Kokozei, A. V. Kozinets, O. V. Nesterova, V. A. Skryshevskii, S. L. Studzinskii, O. V. Tretyak, and E. N. Chigorin, Fiz. Tverd. Tela, 52, No. 6, 1223–1226 (2010).Google Scholar
  21. 21.
    S. M. Ryvkin, Photoelectric Effects in Semiconductors [in Russian], Fizmatgiz, Moscow (1963).Google Scholar
  22. 22.
    Yu. G. Gurevich and A. V. Meriuts, Phys. Lett. A, 377, No. 38, 2673–2675 (2013).ADSCrossRefGoogle Scholar
  23. 23.
    G. A. Nabiev, Fiz. Tekh. Poluprovodn., 43, No. 7, 924–925 (2009).Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • N. A. Davidenko
    • 1
  • V. N. Kokozay
    • 1
  • S. L. Studzinsky
    • 1
  • S. R. Petrusenko
    • 1
  • N. I. Plyuta
    • 1
  • I. I. Davidenko
    • 1
  1. 1.Taras Shevchenko National University of KyivKyivUkraine

Personalised recommendations