Journal of Applied Spectroscopy

, Volume 84, Issue 6, pp 1051–1055 | Cite as

Application of FTIR Spectroscopy for Assessment of Green Coffee Beans According to Their Origin

  • S. M. Obeidat
  • A. Y. Hammoudeh
  • A. A. Alomary

Samples of green coffee beans originating from five different countries were ground and analyzed using FTIR spectra in the region of 600–4000 cm–1. Successful discrimination of each coffee type based on their origin was achieved applying a PCA algorithm on the obtained IR spectra for all samples. PCA loading plots show that the IR bands at 2850, 2920, and 1745 cm–1 corresponding to the symmetric, and antisymmetric vibrations of CH2 and the stretching vibration of C=O bond in ester, respectively, are the most significant peaks in distinguishing the origin of the above coffee samples.


green coffee beans adulteration FTIR principal component analysis 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    M. Grembecka, E. Malinowska, and P. Szefer, Sci. Total Environ., 383, 59–69 (2007).Google Scholar
  2. 2.
    M. S. Butt and M. T. Sultan, Crit. Rev. Food Sci. Nutr., 51, 363–373 (2011).CrossRefGoogle Scholar
  3. 3.
    P. Pohl, E. Stelmach, M. Welna, and A. S. Madeja, Food Anal. Methods, 6, 598–613 (2013).CrossRefGoogle Scholar
  4. 4.
    V. R. M. Filho, W. L. Polito, and J. A. G. Neto, J. Braz. Chem. Soc., 18, 47–53 (2007).Google Scholar
  5. 5.
    V. Krivan, P. Barth, and A. F. Morales, Microchim. Acta, 110, 217–236 (1993).CrossRefGoogle Scholar
  6. 6.
    K. A. Anderson and B. W. Smith, J. Agric. Food Chem., 50, 2068–2075 (2002).Google Scholar
  7. 7.
    M. J. Martin, F. Pablos, and A. G. Gonzalez, Food Chem., 66, 365–370 (1999).CrossRefGoogle Scholar
  8. 8.
    I. Dirinck , I. Van Leuven, and P. Dirinck, Czech. J. Food Sci., 18, 50–51 (2000).Google Scholar
  9. 9.
    F. Wei, K. Furihata, F. Hu, T. Miyakawa, and T. Tanokuta, J. Agric. Food Chem., 59, 9065–9073 (2011).Google Scholar
  10. 10.
    N. Dupuy, J. P. Huvenne, L. Duponche, and P. Legrand, Appl. Spectrosc., 49, 580–585 (1995).ADSCrossRefGoogle Scholar
  11. 11.
    J. R. Santos, M. C. Sarraguça, A. O. S. S. Rangel, and J. A. Lopes, Food Chem., 135, 1828–1835 (2012).CrossRefGoogle Scholar
  12. 12.
    B. Wise, N. Gallagher, S. Butler, D. White, and G. Barna, J. Chemom., 13, 379–385 (1999).CrossRefGoogle Scholar
  13. 13.
    I. T. Jolliffe, Principal Component Analysis, Springer-Verlag, New York (2002).MATHGoogle Scholar
  14. 14.
    S. I. Mussatto, E. M. S. Machado, S. Martins, and J. A. Teixeira, Food Bioprocess Technol., 4, 661–672 (2011).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • S. M. Obeidat
    • 1
  • A. Y. Hammoudeh
    • 1
  • A. A. Alomary
    • 2
  1. 1.Yarmouk UniversityIrbidJordan
  2. 2.The Islamic University of Al-Madinah Al-MunawarahAl-Madinah Al-MunawarahSaudi Arabia

Personalised recommendations