Advertisement

Journal of Applied Spectroscopy

, Volume 84, Issue 6, pp 1044–1050 | Cite as

Activity, Stability, and Structure of Native and Modified by Woodward Reagent K Mushroom Tyrosinase

  • S. Emami
  • H. Piri
  • N. Gheibi
Article
  • 11 Downloads

Mushroom tyrosinase (MT) was considered a good model for studying the inhibition, activation, and mutation of tyrosinase as the key enzyme of melanogenesis. In the present study, the activity, structure, reduction, and stability of native and modified enzymes were investigated after the modification of MT carboxylic residues by the Woodward reagent K (WRK). The relative activity of the sole enzyme was reduced from 100 to 77.9, 53.8, 39.4, and 26.4% after its modification by 2.5, 5, 25, and 50 ratios of [WRK]/[MT], respectively. The Tm values were calculated from thermal denaturation curves at 61.2, 60.1, 58.3, 53.9, and 45.5oC for the sole and modified enzymes. The reduction of the \( \Delta {G}_{{\mathrm{H}}_2\mathrm{O}} \)values for the modified enzyme in chemical denaturation indicated instability. A structural study by CD and intrinsic fluorescence technique revealed the fluctuation of the secondary and tertiary structures of MT.

Keywords

modification mushroom tyrosinase Woodward reagent K kinetics structure 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Y. Kim and H. Uyamab, Cell. Molec. Life Sci., 62, 1707–1723 (2005).CrossRefGoogle Scholar
  2. 2.
    F. Canovas, F. Garcia-Carmona, V. Sanchez, J. Iborra Pastor, and J. Lozano-Teruel, J. Biol. Chem., 257, 8738–8744 (1982).Google Scholar
  3. 3.
    J. Rodriguez-Lopez, J. Tudela, R. Varon, and C. Garcia, Biochim. Biophys. Acta, 1076, 379–386 (1991).CrossRefGoogle Scholar
  4. 4.
    C. Cooksey, P. Garratt, and E. Land, J. Biol. Chem., 272, 26226–26235 (1997).Google Scholar
  5. 5.
    A. Glazer, R. Delange, and D. Sigman, North Holand/Elsevier, Amesterdam, 10–13 (1975).Google Scholar
  6. 6.
    P. Privalov, Crit. Rev. Biochem. Mol. Biol., 25, 281–305 (1990).CrossRefGoogle Scholar
  7. 7.
    C. Walsh, Annu. Rev. Biochem., 53, 493–535 (1984).CrossRefGoogle Scholar
  8. 8.
    W. Ismaya, H. Rozeboom, M. Schurink, C. Boeriu, H. Wichers, and B. Dijkstra, Acta Crystallogr., 67, 575–587 (2011).Google Scholar
  9. 9.
    W. Ismaya, R. Henriette, W. Amrah, M. Jurrian, F. Fabrizia, W. Harry, and D. Bauke, Biochemistry, 50, 5477–5486 (2011).CrossRefGoogle Scholar
  10. 10.
    T. Imoto, M. Fujimoto, and K. Yagishita, J. Biochem., 76, 745–753 (1974).Google Scholar
  11. 11.
    P. Clark and G. Lowe, Eur. J. Biochem., 84, 293–299 (1978).CrossRefGoogle Scholar
  12. 12.
    K. Neet and J. Koshland, Proc. Natl. Acad. Sci. USA, 56, 1606–1611 (1966).CrossRefADSGoogle Scholar
  13. 13.
    L. Polgar and M. Bender, Biochemistry, 6, 610–620 (1967).CrossRefGoogle Scholar
  14. 14.
    H. Yakosawa, S. Ojima, and S. Ishii, J. Biochem., 82, 869–876 (1977).CrossRefGoogle Scholar
  15. 15.
    R. Kuroki, H. Yamada, T. Moriyama, and T. Imoto, J. Biol. Chem., 261, 13571–13574 (1986).Google Scholar
  16. 16.
    P. Dominici, B. Tancini, and V. Borri, J. Biol. Chem., 260, 10583–10589 (1985).Google Scholar
  17. 17.
    G. Brush and M. Bessman, J. Biol. Chem., 268, 1603–1609 (1993).Google Scholar
  18. 18.
    K. Ging, Biophys J., 46, 121–124 (1984).Google Scholar
  19. 19.
    N. Gheibi, A. Saboury, K. Haghbeen, F. Rajaei, and A. Pahlevan, J. Enzyme Inhibit. Med. Chem., 24, 1076–1081 (2009).Google Scholar
  20. 20.
    N. Gheibi, A. Saboury, K. Haghbeen, and A. Moosavi-Movahedi, J. Biosci., 31 (2006).Google Scholar
  21. 21.
    N. Gheibi, A. Saboury, H. Mansuri Torshizi, K. Haghbeen, and A. Moosavi-Movahedi, J. Enzyme Inhibit. Med. Chem., 20, 393–399 (2005).Google Scholar
  22. 22.
    N. Gheibi, A. Saboury, K. Haghbeen, and A. Moosavi-Movahedi, Colloids Surf B: Biointerfaces, 45, 104–107 (2005).CrossRefGoogle Scholar
  23. 23.
    K. Haghbeen, M. Khalili, F. Nematpour, N. Gheibi, M. Fazli, M. Alijanianzadeh, S. Jahromi, and R. Sariri, J. Food Biochem., 34, 308–328 (2010).CrossRefGoogle Scholar
  24. 24.
    C. Pace, B. Shiley, and J. Thomson, In Protein Structure: A Practical Approach, Ed. T. E. Creighton, Oxford, IRL, Vol. e9777, 311–330 (1990).Google Scholar
  25. 25.
    M. Eftink and C. Ghiron, Anal. Biochem., 114, 199–227 (1981).CrossRefGoogle Scholar
  26. 26.
    N. Sun, S. Lee, and K. Song, Lebensmittel-Wissensch. Technol., 35, 315–318 (2002).CrossRefGoogle Scholar
  27. 27.
    N. Carrilo, J. Arana, and R. Vallejos, J. Biol. Chem., 256, 6823–6828 (1981).Google Scholar
  28. 28.
    D. Dinur, E. Kantrowitz, and J. Hajdu, Biochem. Biophys. Res. Commun., 100, 785–792 (1981).CrossRefGoogle Scholar
  29. 29.
    R. Woodward, R. Olofson, and H. Mayer, J. Am. Chem. Soc., 83, 1010–1012 (1961).Google Scholar
  30. 30.
    P. Petra, Biochemistry, 10, 3163–3170 (1971).CrossRefGoogle Scholar
  31. 31.
    Q. Wang, Y. Shi, K. Song, H. Guo, L. Qiu, and Q. Chen, Protein J., 23, 303–308 (2004).CrossRefGoogle Scholar
  32. 32.
    U. Sinha and J. Brewer, Anal. Biochem., 151, 327–333 (1985).CrossRefGoogle Scholar
  33. 33.
    G. Meanst and R. Feeney, Bioconjug. Chem., 1, 2–12 (1990).CrossRefGoogle Scholar
  34. 34.
    Y. Fujita, Y. Uraga, and E. Ichisima, Biochim. Biophys. Acta, 1261, 151–154 (1995).CrossRefGoogle Scholar
  35. 35.
    C. Jimenes-Cervantes, J. Garcia-Barron, J. Lozano, and F. Solano, Biochim. Biophys. Acta, 1243, 421–430 (1995).CrossRefGoogle Scholar
  36. 36.
    N. Chosa, T. Fukumitsu, K. Fujimoto, and E. Ohnishi, Insect Biochem. Mol. Biol., 27, 61–68 (1997).CrossRefGoogle Scholar
  37. 37.
    S. Lapanje, Physiochemical Aspects of Protein Denaturation, John Wiley & Sons, New York, 788–796 (1978).Google Scholar
  38. 38.
    J. Lakowicz, Principles of Fluorescence Spectroscopy, 3rd ed., Springer, New York, 278–285 (2006).Google Scholar
  39. 39.
    E. Ceccarelli and R. Vallejos, Arch. Biochem. Biophys., 224, 382–388 (1983).CrossRefGoogle Scholar
  40. 40.
    P. Paolo, F.Tania, C. Paolo, C. Guido, M. Giampaolo, C. Gianni, R. Giovanni, M. Gloriano, and R. Giampietro, Biochem J., 328, 855–861 (1997).CrossRefGoogle Scholar
  41. 41.
    J. Anthony and H. Bruce, J. Biol. Chem., 249, 5452–5457 (1974).Google Scholar
  42. 42.
    P. Tomme, J. Van Beeumen, and M. Claeyssens, Biochem J., 285, 319–324 (1992).CrossRefGoogle Scholar
  43. 43.
    H. Balakrishnan, L. Satyanarayana, S. Gaikwad, and C. Suresh, Enzyme and Microbiol. Technol., 39, 67–73 (2006).CrossRefGoogle Scholar
  44. 44.
    A. Shailendra, Z. Paolo, V. Attilio, S. Enrico, R. Paolo, and R. Antonio, J. Agric. Food Chem., 63, 7236–7244 (2015).Google Scholar
  45. 45.
    G. Lin, L. Zhi-Rong, P. Daeui, H. Sang, S. Long, J. Seong, B. Jong, P. Yong-Doo, R. Zhen-Long, and Z. Fei, J. Biomol. Struct. Dynam., 26, 395–401 (2008).Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Islamic Azad University Science and Research Branch, Department of Biology, Faculty of Basic SciencesTehranIran
  2. 2.Cellular and Molecular Research CenterQazvin University of Medical SciencesQazvinIran

Personalised recommendations