Journal of Applied Spectroscopy

, Volume 84, Issue 6, pp 1037–1043 | Cite as

Photosynthetic Pigments in Hypogymnia Physodes with Different Metal Contents


Chlorophyll a and b contents in Hypogymnia physodes specimens collected from various economic areas and natural complexes of Tver Region were found to differ substantially using a spectrophotometric method, showing that the lichen photosynthetic system is highly adaptable. The chlorophyll b content was linked primarily to adaptation to specific environmental features in various plant communities. The chlorophyll a content changed to provide the necessary compensatory responses under technogenic stress. A total of 15 metals (Al, As, Cd, Co, Cr, Cu, Fe, Mn, Mo, Ni, Pb, Sb, Ti, V, and Zn) were detected in H. physodes samples using inductively coupled plasma atomicemission spectroscopy (ICP AES). The most widespread of them were Fe, Al, and Ti. Significant correlations among the concentrations of these metals and the chlorophyll a content were revealed.


photosynthetic pigments epiphytic lichens Hypogymnia physodes inductively coupled plasma atomic-emission spectroscopy spectrophotometric method bioindication metals ecosystems anthropogenically transformed areas Tver Region 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. F. Meysurova, S. D. Khizhnyak, and P. M. Pakhomov, Contemp. Probl. Ecol., 4, No. 2, 186–194 (2011).CrossRefGoogle Scholar
  2. 2.
    L. Paoli, S. Munzi, A. Guttova, D. Senko, G. Sardella, and S. Loppi, Ecol. Indic., 52, 362–370 (2015).CrossRefGoogle Scholar
  3. 3.
    M. Casale, L. Bagnasco, P. Giordani, M. G. Mariotti, and P. Malaspina, Chemosphere, 134, 355–360 (2015).ADSCrossRefGoogle Scholar
  4. 4.
    G. N. Tabalenkova, I. V. Dal′keb, and T. K. Golovko, Izv. Samarsk. Nauch. Tsentra Ross. Akad. Nauk, 18, No. 2, 221–225 (2016).Google Scholar
  5. 5.
    A. F. Meisurova and A. A. Notov, Zh. Prikl. Spektrosk., 82, No. 6, 928–935 (2015) [A. F. Meysurova and A. A. Notov, J. Appl. Spectrosc., 82, No. 6, 1005–1012 (2015)].Google Scholar
  6. 6.
    L. F. Maia, B. G. Fleury, B. G. Lages, J. P. Barbosa, A. C. Pinto, H. V. Castro, V. E. de Oliveira, H. G. M. Edwards, and L. F. C. de Oliveira, J. Raman Spectrosc., 42, 653–658 (2011).ADSCrossRefGoogle Scholar
  7. 7.
    I. S. Korotchenko, Detoxification of Heavy Metals (Pb, Cd, Cu) in the Soil–Plant System of Krasnoyarskii Krai Forest–Steppe Zone [in Russian], Min. Sel′sk. Khoz-va RF, Krasnoyar. Gos. Agrar. Univ., Krasnoyarsk (2012).Google Scholar
  8. 8.
    T. K. Golovko, M. A. Shelyakin, I. V. Dal′keb, I. G. Zakhozhii, G. N. Tabalenkova, O. V. Dymova, R. V. Malyshev, and T. N. Pystina, in: Proc. All-Russian Sci. Conf. "Stability Factors of Plants and Microorganisms Under Extreme Natural Conditions and in the Technogenic Medium" [in Russian], September 12–15, 2016, Irkutsk (2016), pp. 202–203.Google Scholar
  9. 9.
    L. V. Vetchinnikova, V. I. Androsova, I. V. Morozova, and O. S. Serebryakova, Sci. Eur., 7-1, No. 7, 4–9 (2016).Google Scholar
  10. 10.
    A. A. Fedorenko, S. E. Zhuravleva, and P. V. Bondarenko, in: Proc. 55th Sci. Conf. of MFTI: All-Russian Scientific Conference "Molecular and Biological Physics" [in Russian], November 19–25, 2012, MFTI, Moscow (2012), pp. 190–191.Google Scholar
  11. 11.
    N. S. Golubkova, Nov. Sist. Nizshikh Rast., 35, 129–140 (2001).Google Scholar
  12. 12.
    J. Raggio, T. G. A. Green, P. D. Crittenden, A. Pintado, M. Vivas, S. Perez-Ortega, A. De Los Raos, and L. G. Sancho, Symbiosis, 56, No. 2, 55–66 (2012).CrossRefGoogle Scholar
  13. 13.
    V. V. Tuzhilkina, Lesovedenie, 4, 16–23 (2012).Google Scholar
  14. 14.
    V. I. Androsova, E. V. Verzhbitskaya, and I. I. Slobodyanik, in: Proc. All-Russian Conf. "Basic and Applied Problems of Botany at the Start of the XXI Century at the XII Convention of the Russian Botanical Society" [in Russian], September 22–27, 2008, Petrozavodsk (2008), Vol. 6, pp. 10–12.Google Scholar
  15. 15.
    T. K. Golovko, O. V. Dymova, G. N. Tabalenkova, and T. N. Pystina, Teor. Prikl. Ekol., 4, 38–44 (2015).Google Scholar
  16. 16.
    T. K. Golovko, T. N. Pystina, I. V. Dal′keb, I. G. Zakhozhii, O. V. Dymova, R. V. Malyshev, G. N. Tabalenkova, and N. A. Semenova, in: Proc. VI All-Russian Conf. with International Participation "Principles and Methods for Preserving Biodiversity" [in Russian], March 11–14, 2015, Ioshkar-Ola (2015), pp. 9–11.Google Scholar
  17. 17.
    E. V. Verzhbitskaya and V. I. Androsova, in: Abstracts of Papers of the 2nd Convention of Russian Mycologists [in Russian], April 16–18, 2008, Moscow (2008), p. 524.Google Scholar
  18. 18.
    M. Backor, K. Paulikova, A. Geralska, and R. Davidson, Pol. J. Environ. Stud., 12, No. 2, 141–150 (2003).Google Scholar
  19. 19.
    J. M. Wakefiled and J. Bhattacharjee, Evansia, 29, No. 4, 104–114 (2012).CrossRefGoogle Scholar
  20. 20.
    A. P. Podterob and P. N. Belyi, Ekol. Vestn., 2, No. 32, 83–88 (2015).Google Scholar
  21. 21.
    L. Folkeson, Water, Air, Soil Pollut., 11, 253–260 (1979).CrossRefGoogle Scholar
  22. 22.
    B. Balabanova, T. Stafilov, R. Sajn, and K. Baeeva, Int. J. Environ. Res., 6, No. 3, 779–792 (2012).Google Scholar
  23. 23.
    I. N. Mikhailova and I. P. Sharunova, Ekologiya, No. 5, 366–372 (2008).Google Scholar
  24. 24.
    O. M. Khramchenkova, Byull. Nauki Prakt., 3, No. 16, 68–77 (2017).Google Scholar
  25. 25.
    T. H. Nash III, Nutrients, Elemental Accumulation, and Mineral Cycling, Cambridge Univ. Press, (2008).CrossRefGoogle Scholar
  26. 26.
    A. F. Meisurova and A. A. Notov, Zh. Prikl. Spektrosk., 83, No. 5, 794–802 (2016) [A. F. Meysurova and A. A. Notov, J. Appl. Spectrosc., 83, No. 5, 832–839 (2016)].Google Scholar
  27. 27.
    A. A. Dorofeev and E. R. Khokhlova, Landscapes of Tver Region [in Russian], Tver. Gos. Univ., Tver (2016).Google Scholar
  28. 28.
    A. A. Notov, Adventitious Component of the Flora of Tver Region: Dynamics of Composition and Structure [in Russian], Tver. Gos. Univ., Tver (2009).Google Scholar
  29. 29.
    L. Balague, E. Manrique, S. Elvira, and A. W. Daviso, Environ. Exp. Bot., 32, No. 2, 85–100 (1992).CrossRefGoogle Scholar
  30. 30.
    K. Strzalka, R. Szymanska, and M. Suwalsky, J. Chil. Chem. Soc., 56, No. 3, 808–811 (2011).CrossRefGoogle Scholar
  31. 31.
    V. I. Androsova, E. F. Markovskaya, and E. V. Semenova, Usp. Sovrem. Estestv., 2, 120–125 (2015).Google Scholar
  32. 32.
    M. Hauck, Environ. Pollut., 158, 1127–1133 (2010).CrossRefGoogle Scholar
  33. 33.
    U. Windisch, A. Pungin, and T. Meckel, Gefahrstoffe — Reinhalt. Luft, 76, No. 4, 128–135 (2016).Google Scholar
  34. 34.
    A. Pungin, U. Windisch, L. Skrypnik, C. Chaika, and P. Feduraev, Gefahrstoffe — Reinhalt. Luft, 77, No. 4, 137–142 (2017).Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Tver State UniversityTverRussia
  2. 2.I. Kant Baltic Federal UniversityKaliningradRussia

Personalised recommendations