Journal of Applied Spectroscopy

, Volume 84, Issue 6, pp 1030–1036 | Cite as

Optical Methods for the Analysis of the Temoprofin Photosensitizer Distribution Between Serum Proteins and Methyl-β-Cyclodextrin Nanocarriers in Blood Serum

  • I. V. Yakavets
  • I. V. Yankovsky
  • I. I. Khludeyev
  • H.P. Lassalle
  • L. N. Bezdetnaya
  • V. P. Zorin

Various optical methods for the analysis of the processes leading to temoporfin photosensitizer distribution between supramolecular nanosized inclusion complexes derived from β−cyclodextrins and blood serum proteins were examined. Methods involving induced circular dichroism, fluorescence anisotropy, and the variability of the shape of the photosensitizer fluorescence excitation spectra were compared with traditional methods such as gel chromatography and ultracentrifugation. The feasibility of using the photosensitizer optical characteristics for analyzing both equilibrium and kinetic processes of photosensitizer distribution in blood was demonstrated. The main advantages and limitations of these approaches in in vitro experiments were described.


temoporfin β-cyclodextrins inclusion complexes blood serum fluorescence anisotropy circular dichroism Soret band 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J. P. Reyftmann, P. Morliere, S. Goldstein, R. Santus, L. Dubertret, and D. Lagrange, Photochem. Photobiol., 40, 721730 (1984).CrossRefGoogle Scholar
  2. 2.
    G. Jori and E. Reddi, Int. J. Biochem., 25, 1369–1375 (1993).CrossRefGoogle Scholar
  3. 3.
    E. Reddi, J. Photochem. Photobiol. B, 37, 189–195 (1997).CrossRefGoogle Scholar
  4. 4.
    T. G. St. Denis and M. R. Hamblin, Appl. Nanosci. Photomed., Chandos Publ., Oxford (2015), pp. 465–485.CrossRefGoogle Scholar
  5. 5.
    V. Reshetov, V. Zorin, A. Siupa, M.-A. D'Hallewin, F. Guillemin, and L. Bezdetnaya, Photochem., Photobiol., 88, 1256–1264 (2012).CrossRefGoogle Scholar
  6. 6.
    S. V. Kurkov and T. Loftsson, Int. J. Pharm., 453, 167–180 (2013).CrossRefGoogle Scholar
  7. 7.
    D. Duchêne, in: E. Bilensoy (Ed.), Cyclodextrins in Pharmaceutics, Cosmetics, and Biomedicine: Current and Future Industrial Applications, John Wiley & Sons, Hoboken, NJ, USA (2011), pp. 1–18.Google Scholar
  8. 8.
    S. Hamai and T. Ohshida, J. Incl. Phenom. Macrocycl. Chem., 50, 209–217 (2004).CrossRefGoogle Scholar
  9. 9.
    D. Demore, A. Kasselouri, O. Bourdon, J. Blais, G. Mahuzier, and P. Prognon, Appl. Spectrosc., 53, 523–527 (1999).ADSCrossRefGoogle Scholar
  10. 10.
    H. Kolárová, M. Huf, J. Macedek, P. Nevrelová, M. Tomecka, R. Bajgar, J. Mosinger, and M. Strnad, Acta Medica Hradec Král. Univ. Carol. Fac. Medica Hradec Král, 47, 313–315 (2004).Google Scholar
  11. 11.
    M. O. Senge and J. C. Brandt, Photochem. Photobiol., 87, 1240–1296 (2011).CrossRefGoogle Scholar
  12. 12.
    M. O. Senge, Photodiagn. Photodyn. Therapy, 9, 170–179 (2012).CrossRefGoogle Scholar
  13. 13.
    I. Yankovsky, E. Bastien, I. Yakavets, I. Khludeyev, H.-P. Lassalle, S. Gräfe, L. Bezdetnaya, and V. Zorin, Eur. J. Pharm. Sci. Off. J. Eur. Fed. Pharm., 91, 172–182 (2016).Google Scholar
  14. 14.
    I. Yakavets, I. Yankovsky, L. Bezdetnaya, and V. Zorin, Dyes Pigments, 137, 299–306 (2017).CrossRefGoogle Scholar
  15. 15.
    I. Yakavets, I. Yankovsky, M. Millard, L. Lamy, H.-P. Lassalle, A. Wiehe, V. Zorin, and L. Bezdetnaya, Int. J. Pharm., 529, 568–575 (2017).CrossRefGoogle Scholar
  16. 16.
    A. Bautista-Sanchez, A. Kasselouri, M.-C. Desroches, J. Blais, P. Maillard, D. M. de Oliveira, A. C. Tedesco, P. Prognon, and J. Delaire, J. Photochem. Photobiol. B, 81, 154–162 (2005).CrossRefGoogle Scholar
  17. 17.
    V. A. Reshetov, T. E. Zorina, M.-A. D'Hallewin, L. N. Bolotina, and V. P. Zorin, Zh. Prikl. Spektrosk., 78, No. 1, 114–120 (2011) [V. A. Reshetov, T. E. Zorina, M.-A. D'Hallewin, L. N. Bolotina, and V. P. Zorin, J. App. Spectrosc., 78, No. 1, 103–109 (2011)].Google Scholar
  18. 18.
    S. Sasnouski, V. Zorin, I. Khludeyev, M.-A. D’Hallewin, F. Guillemin, and L. Bezdetnaya, Biochim. Biophys. Acta, 1725, 394–402 (2005).CrossRefGoogle Scholar
  19. 19.
    R. J. Glisoni, D. A. Chiappetta, A. G. Moglioni, and A. Sosnik, Pharm. Res., 29, 739–755 (2011).CrossRefGoogle Scholar
  20. 20.
    M. C. Desroches, A. Kasselouri, O. Bourdon, P. Chaminade, J. Blais, and P. Prognon, Analyst, 126, 923–927 (2001).ADSCrossRefGoogle Scholar
  21. 21.
    M. Dobiásová, Z. Urbanová, and M. Samánek, Physiol. Res. Acad. Sci. Biohemoslov, 54, 159–165 (2005).Google Scholar
  22. 22.
    J. Chen, W.-L. Lu, W. Gu, S.-S. Lu, Z.-P. Chen, B.-C. Cai, and X.-X. Yang, Expert Opin. Drug Deliv., 11, 565–577 (2014).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • I. V. Yakavets
    • 1
    • 2
    • 3
  • I. V. Yankovsky
    • 1
  • I. I. Khludeyev
    • 1
    • 4
  • H.P. Lassalle
    • 2
    • 3
  • L. N. Bezdetnaya
    • 2
    • 3
  • V. P. Zorin
    • 1
    • 5
  1. 1.Belarusian State UniversityMinskBelarus
  2. 2.Centre de Recherche en Automatique de NancyVandoeuvre-lès-NancyFrance
  3. 3.Institut de Cancérologie de LorraineVandoeuvre-lès-NancyFrance
  4. 4.Belarusian State University of Informatics and RadioelectronicsMinskBelarus
  5. 5.A. D. Sakharov International State Environmental Institute of the Belarusian State UniversityMinskBelarus

Personalised recommendations