Journal of Applied Spectroscopy

, Volume 84, Issue 6, pp 1024–1029 | Cite as

IR Spectroscopy and X-Ray Phase Analysis of the Chemical Composition of Gallstones


The composition of the inorganic and organic parts of gallstones was investigated by x-ray phase analysis and IR spectroscopy. Cholesterol, bilirubin, calcium bilirubinate, calcium carbonate, and calcium hydrogen phosphate are all found in gallstones. The major component is cholesterol. A gallstone was separated into layers and the inorganic part was separated out by annealing. Inorganic compounds were found to predominate in the outer layer of the gallstone, which is related to the mechanism of its formation. The inorganic part contains calcium carbonate, present in both the calcite and waterite modifications.


gallstone free radicals x-ray phase analysis IR spectroscopy 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    L. Klimek, Archiv. Found. Engin., 11, No. 3, 117–120 (2011).Google Scholar
  2. 2.
    A. Parviainen, J. M. Suarez-Grau, R. Perez-Lopez, J. M. Nieto, C. J. Carrido, and G. Cobo-Cardenas, Sci. Total. Environ., 573, 433–443 (2016).ADSCrossRefGoogle Scholar
  3. 3.
    C.-L. Cheng, H.-H. Chang, J.-H. Chen, P.-I. Tsai, Y.-T. Huang, and S.-Y. Lin, Digestive and Liver Disease, 48, No. 5, 519–527 (2016).CrossRefGoogle Scholar
  4. 4.
    J. Brezestean, N. Har, A. Tantau, M. Gorea, M. M. Venter, and S. C. Pinzaru, Studia UBB Chemia, 60, No. 1, 29–43 (2015).Google Scholar
  5. 5.
    J. M. Donovan, Gastroenterol. Clin. North. Am., 28, No. 1, 75–97 (1999).CrossRefGoogle Scholar
  6. 6.
    C. W. Ko and S. P. Lee, Gastroenterol. Clin. North Am., 28, No. 1, 99–115 (1999).CrossRefGoogle Scholar
  7. 7.
    M. D. Apstein and M. C. Carey, Europ. J. Clin. Investig., 26, No. 5, 343–352 (1996).CrossRefGoogle Scholar
  8. 8.
    P. Portincasa, A. Moschetta, and G. Palasciano, Lancet, 368, No. 9531, 230–239 (2006).CrossRefGoogle Scholar
  9. 9.
    N. H. Afdal and B. F. Smith, J. Hepatol., 11, 669–702 (1990).Google Scholar
  10. 10.
    M. C. Carey, Am. J. Surgery, 165, 410–419 (1993).CrossRefGoogle Scholar
  11. 11.
    T. R. Rautray, V. Vijayan, and S. Panigraphis, Nucl. Instrum. Method. Phys. Res. B, 255, 409–415 (2007).ADSCrossRefGoogle Scholar
  12. 12.
    H. Weerakoon, A. Navarante, S. Ranasighe, R. Sivakanesan, K. B. Galketiya, and S. Rosario, Plos One, 10, No. 4, 1–12 (2015).CrossRefGoogle Scholar
  13. 13.
    G. F. Unger, L. V. Tsyro, A. A. Pichugina, D. A. Afanas'ev, and S. A. Kiselev, Vestn. MGTU im. N. É. Baumana, Ser. Estestv. Nauki, No. 4, 107–122 (2016).Google Scholar
  14. 14.
    Y. Sun, Z. Yang, G. Shen, Y. Zhou, X. Zhou, J. Wu, and G. Xu, Sci. China B, 44, No. 4, 449–456 (2001).CrossRefGoogle Scholar
  15. 15.
    I. S. Kim, S. J. Myung, S. S. Lee, S. K. Lee, and M. H. Kim, Yonsei Med. J., 44, No. 4, 561–570 (2003).CrossRefGoogle Scholar
  16. 16.
    L. Ravnborg, D. Jeilum, and L. R. Redersen, Scand. J. Gastroenterol., 25, No. 2, 720–721 (1990).CrossRefGoogle Scholar
  17. 17.
    A. Iordanidis, J. Garcia-Guinea, A. Giosesef, A. Angelopoulos, M. Deulgerahis, and L. Papadopoulou, Spectrosc. Lett., 46, 301–306 (2013).ADSCrossRefGoogle Scholar
  18. 18.
    A. A. Pichugina, L. V. Tsyro, D. A. Afanasyev, S. A. Kiselev, and F. G. Unger, Zh. Prikl. Spektrosk., 84, No. 1, 101–105 (2017) [A. A. Pichugina, L. V. Tsyro, D. A. Afanasyev, S. A. Kiselev, and F. G. Unger, J. Appl. Spectrosc., 84, No. 1, 87–91 (2017)].Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.National Research Tomsk State UniversityTomskRussia
  2. 2.Surgut State UniversitySurgutRussia

Personalised recommendations