Advertisement

Journal of Applied Spectroscopy

, Volume 84, Issue 6, pp 1019–1023 | Cite as

FTIR Spectroscopy of Protein Isolates of Salt-Tolerant Soybean Mutants

  • S. Akyuz
  • T. Akyuz
  • O. Celik
  • C. Atak
Article
  • 35 Downloads

The effect of salinity on the conformation of proteins of four salt-tolerant M2 generation mutants of soybean plants (S04-05/150-2, S04-05/150-8, S04-05/150-106, and S04-05/150-114) was investigated using Fourier transform infrared (FTIR) spectroscopy. Salinity is one of the important abiotic stress factors that limits growth and productivity of plants. The mutants belonging to the M2 generation were determined as tolerant to 90 mM NaCl. The relative contents of α-helix, β-sheet, turn, and irregular conformations for the soybean protein isolates were determined depending on the analysis of the amide I region. The comparison of the secondary structures of soybean proteins of the mutants with those of the control group indicated that the α-helix structure percentage was diminished while β-turn and disordered structures were increased as a result of the salt stress.

Keywords

IR spectroscopy soybean protein isolates salt-tolerant mutants 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    C. Wang, L. Jiang, D. Wei, Y. Li, X. Sui, Z. Wang, and D. Li, Procedia Eng., 15, 4819–4827 (2011).CrossRefGoogle Scholar
  2. 2.
    M. Ortbauer, in: Abiotic Stress — Plant Responses and Applications in Agriculture, Eds. K. Vahdati, C. Leslie, INTECH Open Access Publisher, 3–23 (2013);  https://doi.org/10.5772/53129.
  3. 3.
    C. Atak, S. Alikamanoglu, L. Acik, and Y. Canbolat, Mutat. Res., 556, 35–44 (2004).CrossRefGoogle Scholar
  4. 4.
    O. Celik and C. Atak, Pol. J. Environ. Stud., 21, 559–564 (2012).Google Scholar
  5. 5.
    O. Celik, S. G. Unsal, Plant Omics J., 6, No. 5, 364–370 (2013).Google Scholar
  6. 6.
    S. Akyuz, T. Akyuz, O. Celik, and C. Atak, J. Mol. Struct., 1044, 67–71 (2013).ADSCrossRefGoogle Scholar
  7. 7.
    K. Kong-ngern, S. Daduang, C. Wongkham, S. Bunnag, M. Kosittrakun, and P. Theerakulpisut, Sci. Asia, 31, 403–408 (2005)CrossRefGoogle Scholar
  8. 8.
    S. Akyuz, T. Akyuz, O. Celik, and C. Atak, Development of Salt Tolerant Soybean Mutants via Mutation Breeding (2010): Unpublished Data.Google Scholar
  9. 9.
    M. M. Bradford, Anal. Biochem., 72, 248–254 (1976).CrossRefGoogle Scholar
  10. 10.
    E. Goormaghtigh, V. Cabiaux, and J.-M. Ruysschaert, in: Subcellular Biochemistry, 23, Eds. H. J. Hilderson, G. B. Ralston, Springer Science, New York, 329–362, 405–450 (1994).Google Scholar
  11. 11.
    A. Barth and C. Zscherp, Q. Rev. Biophys., 35, 369–430 (2002).CrossRefGoogle Scholar
  12. 12.
    M. S. Braiman and K. J. Rothschild, Annu. Rev. Biophys. Biophys. Chem., 17, 541–570 (1988).CrossRefGoogle Scholar
  13. 13.
    D. M. Byler and H. Susi, Biopolymers, 25, 469–487 (1986).CrossRefGoogle Scholar
  14. 14.
    Y. El Khoury, R. Hielscher, M. Voicescu, J. Gross, and P. Hellwig, Vib. Spectrosc., 55, 258–266 (2011).CrossRefGoogle Scholar
  15. 15.
    H. H. de Jongh, E. Goormaghtigh, and J. M. Ruysschaert, Anal. Biochem., 242, 95–103 (1996).CrossRefGoogle Scholar
  16. 16.
    Y. N. Chirgadze and E. V. Brazhnikov, Biopolymers, 13, 1701–1712 (1974).CrossRefGoogle Scholar
  17. 17.
    Y. N. Chirgadze, B. V. Shestopalov, and S. Yu. Venyaminov, Biopolymers, 12, 1337–1351 (1973).CrossRefGoogle Scholar
  18. 18.
    S. Yu. Venyaminov and N. N. Kalnin, Biopolymers, 30, 1259–1271 (1990).CrossRefGoogle Scholar
  19. 19.
    G. Vedantham, H. G. Sparks, S. U. Sane, S. Tzannis, and T. M. Przybycien, Anal. Biochem., 285, 33–49 (2000).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Istanbul Kultur UniversityIstanbulTurkey

Personalised recommendations