Advertisement

Journal of Applied Spectroscopy

, Volume 84, Issue 6, pp 1014–1018 | Cite as

Description of Mössbauer Spectra Including the Square of the Lorentzian

  • V. I. Petrov
  • S. S. Martynenko
  • N. D. Khmelevskaya
Article
  • 19 Downloads

Application of a linear combination of the Lorentzian function and its square has led to better description of Mössbauer spectra obtained using a resonance detector, compared with description using a simple Lorentzian. Mathematical fitting and description of the spectra were done for solid solutions based on beryllium with 0.09–0.80 wt.% iron. The fine structure parameters for the solid solutions match literature data. We discuss some features of using the method for fast processing of experimental spectra.

Keywords

Mössbauer spectroscopy resonance detector distortion of spectra contribution of the square of the Lorentzian, solid solution of iron in beryllium. 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S. M. Irkaev and V. V. Morozov, Zh. Tekh. Fiz., 52, No. 1, 122–124 (1982).Google Scholar
  2. 2.
    J. Odeurs, G. R. Hoy, C. L′Abbé, G. E. Koops, H. Pattin, R. N. Shakhmuratov, R. Coussement, N. Chiodini, and A. Palleari, Hyperfine Interactions, 139/140, 685–690 (2002).CrossRefGoogle Scholar
  3. 3.
    V. P. Gladkov, V. A. Kashcheev, A. H. Kouskov, and V. I. Petrov, Zh. Prikl. Spektrosk., 71, No. 5, 668–671 (2004) [V. P. Gladkov, V. A. Kashcheev, A. H. Kouskov, and V. I. Petrov, J. Appl. Spectrosc., 71, No. 5, 731–735 (2004) (English translation)].Google Scholar
  4. 4.
    J. Odeurs, G. R. Hoy, C. L′Abbé, R. N. Shakhmuratov, and R. Coussement, Phys. Rev. B, 62, No. 10, 6148–6157 (2000).ADSCrossRefGoogle Scholar
  5. 5.
    V. P. Filippov, Yu. A. Lauer, and V. I. Petrov, Hyperfine Interactions, 237, No. 1, 1–6 (2016).Google Scholar
  6. 6.
    G. N. Belozerskii, A. K. Grigor′ev, V. A. Ivanov, V. G. Semenov, and A. Yu. Sokolov, Pisma Zh. Tekh. Fiz., 12, No. 22, 1377–1388 (1986).Google Scholar
  7. 7.
    A. V. Kryanev, G. V. Lukin, and D. K. Udumyan, Metric Analysis and Data Processing [in Russian], Fizmatlit, Moscow (2012), pp. 87, 89–91, 175–178.Google Scholar
  8. 8.
    F. P. Vasil′ev, Numerical Methods for Solving Extremum Problems [in Russian], Nauka, Moscow (1988), pp. 260, 342, 415.Google Scholar
  9. 9.
    B. H. Armstrong, J. Quant. Spectrosc. Radiat., 7, 61–88 (1967).ADSCrossRefGoogle Scholar
  10. 10.
    V. P. Gladkov, S. S. Martynenko, and V. I. Petrov, Zh. Prikl. Spektrosk., 78, No. 2, 316–320 (2011) [V. P. Gladkov, S. S. Martynenko, and V. I. Petrov, J. Appl. Spectrosc., 78, No. 2, 296–300 (2011) (English translation)].Google Scholar
  11. 11.
    T. Ida, M. Ando, and H. Toraya, J. Appl. Cryst., 33, 1311–1316 (2000).CrossRefGoogle Scholar
  12. 12.
    V. S. Rusakov, Mössbauer Spectroscopy of Locally Inhomogeneous Systems [in Russian], OPNI IYaF, Almaty (2000), p. 41.Google Scholar
  13. 13.
    C. Janot and P. Delcroix, Phil. Mag., 30, 651–661 (1974).ADSCrossRefGoogle Scholar
  14. 14.
    O. C. Kistner and B. Mozer, Bull. Am. Phys. Soc., 7, No. 7, 505–508 (1962).Google Scholar
  15. 15.
    J. P. Schiffer, P. N. Parks, and J. Heberle, Phys. Rev., 133, No. 6A, 1553–1557 (1964).ADSCrossRefGoogle Scholar
  16. 16.
    V. P. Gladkov, V. I. Petrov, S. S. Martynenko, and A. V. Kryanev, Yadernaya Fizika i Inzhiniring, 3, No. 4, 1–7 (2012).Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • V. I. Petrov
    • 1
  • S. S. Martynenko
    • 1
  • N. D. Khmelevskaya
    • 1
  1. 1.National Research Nuclear University MEPhIMoscowRussia

Personalised recommendations