Journal of Applied Spectroscopy

, Volume 84, Issue 6, pp 1006–1013 | Cite as

Synthesis of Nickel–Carbon Nanoparticles by Electrical Discharge in Liquid

  • V. S. Burakov
  • V. V. Kiris
  • A. A. Nevar
  • M. I. Nedelko
  • N. V. Tarasenko
  • G. N. Churilov

Composite nickel–carbon nanoparticles were synthesized by electrical discharge in liquid. The synthesis was carried out in water and ethanol under various discharge conditions, including purging the discharge gap with argon. In water, electrical discharge was conducted between graphite and nickel electrodes. In ethanol, two nickel electrodes were used with the liquid acting as the carbon supplier. The size of the particles obtained, their composition, and the production rate depend on the type of working fluid and synthesis duration. It was also shown that the particle production rate in water is greater than in ethanol, and purging the electrode gap with argon reduces this rate two or three times.


electrical discharge in liquid nickel–carbon nanoparticle 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    C. Wang, P. Zhai, Z. Zhang, Y. Zhou, J. Zhang, H. Zhang, Z. Shi, R. Han, F. Huang, and D. Ma, J. Catalysis, 334, 42–51 (2016).CrossRefGoogle Scholar
  2. 2.
    A. L. M. da Silva, J. P. den Breejen, L. V. Mattos, J. H. Bitter, K. P. de Jong, and F. B. Noronha, J. Catalysis, 318, 67–74 (2014).CrossRefGoogle Scholar
  3. 3.
    Yu. G. Morozov, O. V. Belousova, and M. V. Kuznetsov, Inorg. Mater., 47, 36–40 (2011).CrossRefGoogle Scholar
  4. 4.
    K. H. Ang, I. Alexandrou, N. D. Mathur, G. A. J. Amaratunga, and S. Haq, Nanotechnology, 15, 520–524 (2004).ADSCrossRefGoogle Scholar
  5. 5.
    N. B. Trung, T. V. Tam, D. K. Dang, K. F. Babu, E. J. Kim, J. Kim, and W. M. Choi, Chem. Eng. J., 264, 603–609 (2015).CrossRefGoogle Scholar
  6. 6.
    M. R. Sanaee and E. Bertran, J. Nanomater., 450183 (10 p.) (2015).Google Scholar
  7. 7.
    S. Chaitoglou, M. Reza Sanaee, N. Aguiló-Aguayo, and E. Bertran, J. Nanomater., 178524(1–8) (2014).Google Scholar
  8. 8.
    G. Saito and T. Akiyama, J. Nanomater., 123696 (21р.) (2015).Google Scholar
  9. 9.
    V. S. Burakov, V. V. Kiris, A. A. Nevar, M. I. Nedelko, and N. V. Tarasenko, Zh. Prikl. Spektrosk., 83, No. 4, 633–639 (2016) [V. S. Burakov, V. V. Kiris, A. A. Nevar, M. I. Nedelko, and N. V. Tarasenko, J. Appl. Spectrosc., 83, No. 4, 643–649 (2016)].Google Scholar
  10. 10.
    N. Parkansky, O. Goldsmith, B. Alterkop, R. L. Boxman, Z. Barkay, Yu. Rosenberg, and G. Frenkel, Powder Technol., 161, 215–219 (2006).CrossRefGoogle Scholar
  11. 11.
    V. S. Burakov and S. N. Raikov. Spectrochim. Acta, B: At. Spectrosc., 62, 217–223 (2007).ADSCrossRefGoogle Scholar
  12. 12.
    E. Tognoni, G. Cristoforetti, S. Legnaioli, and V. Palleschi, Spectrochim. Acta, B: At. Spectrosc., 65, 1–14 (2010).ADSCrossRefGoogle Scholar
  13. 13.
    A. C. Ferrari, Solid State Commun., 143, 47–57 (2007).ADSCrossRefGoogle Scholar
  14. 14.
    C. J. Reckmeier, J. Schneider, A. S. Susha, and A. L. Rogach, Opt. Express, 24, A312–А340 (2016).ADSCrossRefGoogle Scholar
  15. 15.
    International Centre for Diffraction Data, form 08-0415.Google Scholar
  16. 16.
    G. Grim, Spectral Line Broadening in Plasma [in Russian], Mir, Moscow (1978).Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • V. S. Burakov
    • 1
  • V. V. Kiris
    • 1
  • A. A. Nevar
    • 1
  • M. I. Nedelko
    • 1
  • N. V. Tarasenko
    • 1
  • G. N. Churilov
    • 2
  1. 1.B. I. Stepanov Institute of PhysicsNational Academy of Sciences of BelarusMinskBelarus
  2. 2.L. V. Kirensky Institute of PhysicsSiberian Branch of the Russian Academy of SciencesKrasnoyarskRussia

Personalised recommendations