Journal of Applied Spectroscopy

, Volume 84, Issue 6, pp 999–1005 | Cite as

Observation of Conducting Structures in Detonation Nanodiamond Powder by Electron Paramagnetic Resonance

  • Nguyen Thi Thanh Binh
  • V. Yu. Dolmatov
  • N. M. Lapchuk

We have used electron paramagnetic resonance (EPR) to study high-purity detonation nanodiamond (DND) powders at room temperature. In recording the EPR signal with g factor 2.00247 and line width 0.890 mT, with automatic frequency control locking the frequency of the microwave generator (klystron) to the frequency of the experimental cavity, we observed a change in the shape of the EPR signal from the DND powder due to formation of an anisotropic electrically conducting structure in the powder. The electrical conductivity of the DND sample is apparent in the Dysonian EPR lineshape (strongly asymmetric signal with g factor 2.00146 and line width 0.281 mT) together with an abrupt shift of the baseline at the time of resonant absorption, and in the decrease in the cavity Q due to nonresonant microwave absorption. The observed effect can be explained by transition of the DND powder from a dielectric state to a state with metallic conductivity, due to spin ordering in a preferred direction.


nanodiamond powder electron paramagnetic resonance anisotropic conducting structure 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    V. Yu. Dolmatov, Usp. Khim., 70, No. 7, 687–703 (2001).CrossRefGoogle Scholar
  2. 2.
    V. Yu. Dolmatov, Detonation Nanodiamonds. Synthesis, Properties, Application [in Russian], Professional, St. Petersburg (2011).Google Scholar
  3. 3.
    A. Krueger, J. Chem. Eur., 14, 1382–1390 (2008).CrossRefGoogle Scholar
  4. 4.
    O. Shenderova, V. Grichko, S. Hens, and J. Walch, Diamond Relat. Mater., 16, No. 12, 2003–2008 (2007).CrossRefADSGoogle Scholar
  5. 5.
    S. Osswald, G. Yushin, V. Mochalin, S. O. Kucheyev, and Y. Gogotski, J. Am. Chem. Soc., 128, No. 35, 11635–11642 (2006).CrossRefGoogle Scholar
  6. 6.
    A. Schrand, S. C. Hens, and O. Shenderova, Crit. Rev. Solid State Mater. Sci., 34, 18–74 (2009).CrossRefADSGoogle Scholar
  7. 7.
    I. I. Kulakova, Fiz. Tverd. Tela, 46, No. 4, 621–628 (2004).Google Scholar
  8. 8.
    A. I. Shames, A. M. Panich, W. Kempinski, A. E. Alexenskii, M. V. Baidakova, A. T. Dideikin, V. Yu. Osipov, V. I. Siklitski, E. Osawa, M. Ozawa, and A. Ya. Vul, J. Phys. Chem. Solids, 63, 1993–2001 (2002).CrossRefADSGoogle Scholar
  9. 9.
    A. V. Fionov, A. Lund, W. Chen, N. N. Rozhkova, I. Buyanova, G. I. Emelyanova, L. E. Gorlenko, E. V. Golubina, E. S. Lokteva, E. Osawa, and V. V. Lunin, Chem. Phys. Lett., 493, 319–322 (2010).CrossRefADSGoogle Scholar
  10. 10.
    A. S. Barnard and M. Sternberg, Nanotechnology, 18, 025702(1–11) (2007).Google Scholar
  11. 11.
    P. W. Anderson, J. Less-Common Metals, 62, 291–294 (1978).CrossRefGoogle Scholar
  12. 12.
    W. Kinzel, Usp. Fiz. Nauk, 152, 123–131 (1987).CrossRefGoogle Scholar
  13. 13.
    A. I. Shames, D. Mogilyansky, A. M. Panich, N. A. Sergeev, M. Olszewski, J.-P. Boudou, and V. Yu. Osipov, Phys. Status Solidi A, 212, No. 11, 2400–2409 (2015).CrossRefADSGoogle Scholar
  14. 14.
    J.-C. Arnault, ed., Nanodiamonds: Advanced Material Analysis, Properties and Applications, Elsevier (2017).Google Scholar
  15. 15.
    Thi Thanh Binh Nguyen, V. Yu. Dolmatov, and N. M. Lapchuk, Zh. BGU. Fizika, 3, 95–101 (2017).Google Scholar
  16. 16.
    V. Yu. Dolmatov, A. Vehanen, V. Myllymäki, K. A. Rudometkin, A. N. Panova, K. M. Korolev, and T. A. Shpadkovskaya, Russ. J. Appl. Chem., 86, No. 7, 1036–1045 (2013).CrossRefGoogle Scholar
  17. 17.
    Thi Thanh Binh Nguyen, in: Proc. Twenty-Fourth Int. Sci. and Appl. Conf. of Graduate Students, Post-Graduates, and Undergraduates on Physics of the Condensed State, Grodno, April 21, 2016 [in Russian], GrGU im. Ya. Kupaly (2016), pp. 75–76.Google Scholar
  18. 18.
    R. Fedaruk and S. V. Adashkevich, Zh. Prikl. Spektrosk., 81, No. 3, 333–337 (2014) [R. Fedaruk and S. V. Adashkevich, J. Appl. Spectrosc., 81, No. 3, 355–359 (2014) (English translation)].Google Scholar
  19. 19.
    R. Fedaruk, R. Strzelczyk, K. Tadyszak, S. A. Markevich, and M. A. Augustyniak-Jablokow, JMR, 274, 73–79 (2017).Google Scholar
  20. 20.
    J. M. de Voogd, J. J. T. Wagenaar, and T. H. Ooserkamp, Sci. Rep., 7, 42239 (2017).CrossRefADSGoogle Scholar
  21. 21.
    G. G. Fedoruk, Zh. Prikl. Spektrosk., 69, No. 2, 141–159 (2002) [G. G. Fedoruk, J. Appl. Spectrosc., 69, No. 2, 161–182 (2002) (English translation)].Google Scholar
  22. 22.
    A. P. Saiko and R. R. Fedaruk, Pisma Zh. Éksp. Teor. Fiz., 87, No. 3, 154–158 (2008) [A. P. Saiko and G. G. Fedoruk, JETP Lett., 87, No. 3, 128–132 (2008) (English translation)].Google Scholar
  23. 23.
    D. P. Erchak, A. G. Ulyashin, R. B. Gelfand, N. M. Penina, A. M. Zaitsev, V. S. Varichenko, V. G. Efimov, and V. F. Stelmakh, Nucl. Instrum. Method. B, 69, 271 (1992).CrossRefADSGoogle Scholar
  24. 24.
    Charles P. Poole, Jr., Electron Spin Resonance: A Comprehensive Treatise on Experimental Techniques [Russian translation], Mir, Moscow (1970), pp. 448–457.Google Scholar
  25. 25.
    A. S. Kotosonov, Fiz. Tverd. Tela, 31, No. 8, 146–152 (1989).Google Scholar
  26. 26.
    T. Tsuzuku, Carbon, 17, No. 2, 293–301 (1979).CrossRefGoogle Scholar
  27. 27.
    N. M. Lapchuk, N. E. Bykovskii, A. N. Oleshkevich, T. M. Lapchuk, and A. V. Kobets, in: Proc. Seventh Int. Sci. Conf. on Materials and Structures in Modern Electronics, Minsk, October 12–13, 2016, Izd. Tsentr. BGU (2016), pp. 269–272.Google Scholar
  28. 28.
    A. I. Veinger, Fiz. Tekh. Poluprovodn., 37, No. 7, 874–882 (2003).Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Nguyen Thi Thanh Binh
    • 1
  • V. Yu. Dolmatov
    • 2
  • N. M. Lapchuk
    • 1
  1. 1.Belarusian State UniversityMinskBelarus
  2. 2.Federal State Unitary Enterprise Special Design-Technology Bureau (FSUE SDTB) TekhnologSt. PetersburgRussia

Personalised recommendations