Advertisement

Journal of Applied Spectroscopy

, Volume 84, Issue 6, pp 995–998 | Cite as

Possibility of Determining the Graphene Doping Level Using Raman Spectra

  • N. G. Kovalchuk
  • K. A. Nigerish
  • M. M. Mikhalik
  • N. I. Kargin
  • I. V. Komissarov
  • S. L. Prischepa
Article
  • 58 Downloads

Raman spectroscopy was used to study the structure of graphene synthesized from methane by chemical vapor deposition at atmospheric pressure and transferred to a SiO2/Si substrate using various transfer and polymer-removal methods. It was found that the dependences of the 2D peak positions on the G peak positions of the studied samples were well-behaved linear functions with slopes of ~2.2 that suggested the existence of biaxial stress in the graphene. It was discovered that the doping in the samples changed.

Keywords

graphene doping Raman spectrum chemical vapor deposition 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    X. Li, W. Cai, J. An, S. Kim, J. Nah, D. Yang, R. Piner, A. Velamakanni, I. Jung, E. Tutuc, S. K. Banerjee, L. Colombo, and R. S. Ruoff, Science, 324, 1312–1314 (2009).ADSCrossRefGoogle Scholar
  2. 2.
    A. Pirkle, J. Chan, A. Venugopa, D. Hinojos, C. W. Magnuson, S. McDonnell, L. Colombo, E. M. Vogel, R. S. Ruoff, and R. M. Wallace, Appl. Phys. Lett., 99, 122108 (2011).ADSCrossRefGoogle Scholar
  3. 3.
    D. S. Sarma, A. Shaffique, E. H. Hwang, and E. Rossi, Rev. Mod. Phys., 83, 407 (2011).ADSCrossRefGoogle Scholar
  4. 4.
    A. C. Ferrari and D. M. Basko, Nat. Nanotechnol., 8, 235–246 (2013).ADSCrossRefGoogle Scholar
  5. 5.
    S. Goniszewski, M. Adabi, O. Shaforost, S. M. Hanham, L. Ha, and N. Klein, Sci. Rep., 6, 22858 (2016).ADSCrossRefGoogle Scholar
  6. 6.
    I. V. Komissarov, N. G. Kovalchuk, E. A. Kolesov, M. S. Tivanov, O. V. Korolik, A. V. Mazanik, Yu. P. Shaman, A. S. Basaev, V. A. Labunov, S. L. Prischepa, N. I. Kargin, R. V. Ryzhuk, and S. A. Shostachenko, Phys. Procedia, 72, 450–454 (2015).ADSCrossRefGoogle Scholar
  7. 7.
    I. V. Komissarov, N. G. Kovalchuk, V. A. Labunov, K. V. Girel, O. V. Korolik, M. S. Tivanov, A. Lazauskas, M. Andrulevicius, T. Tamulevicius, V. Grigaliunas, S. Meskinis, S. Tamulevicius, and S. L. Prischepa, Beilstein J. Nanotechnol., 8, 145–158 (2017).CrossRefGoogle Scholar
  8. 8.
    J. Hong, M. K. Park, E. J. Lee, D. Lee, D. S. Hwang, and S. Ryu, Sci. Rep., 3, 2700 (2013).ADSCrossRefGoogle Scholar
  9. 9.
    G. B. Barin, Y. Song, I. de Fatima Gimenez, A. Gomes Souza Filho, L. S. Barreto, and J. Kong, Carbon, 84, 82–90 (2015).CrossRefGoogle Scholar
  10. 10.
    A. Das, B. Chakraborty, S. Piscanec, S. Pisana, A. K. Sood, and A. C. Ferrari, Phys. Rev. B: Condens. Matter Mater. Phys., 79, 155417 (2009).ADSCrossRefGoogle Scholar
  11. 11.
    J. E. Lee, G. Ahn, J. Shim, Y. S. Lee, and S. Ryu, Nat. Commun., 3, 1024 (2012).ADSCrossRefGoogle Scholar
  12. 12.
    J. Zabel, R. R. Nair, A. Ott, T. Georgiou, A. K. Geim, K. S. Novoselov, and C. Casiraghi, Nano Lett., 12, 617–621 (2012).ADSCrossRefGoogle Scholar
  13. 13.
    E. Koo and S. Y. Ju, Carbon, 86, 318–324 (2015).CrossRefGoogle Scholar
  14. 14.
    S. D. Costa, A. Righi, C. Fantini, Y. Hao, C. Magnuson, L. Colombo, R. S. Ruoff, and M. A. Pimenta, Solid State Commun., 152, 1317–1320 (2012).ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • N. G. Kovalchuk
    • 1
  • K. A. Nigerish
    • 1
  • M. M. Mikhalik
    • 1
  • N. I. Kargin
    • 2
  • I. V. Komissarov
    • 1
    • 2
  • S. L. Prischepa
    • 1
    • 2
  1. 1.Belarusian State University of Informatics and RadioelectronicsMinskBelarus
  2. 2.National Research Nuclear University MEPhI (Moscow Engineering Physics Institute)MoscowRussia

Personalised recommendations