Journal of Applied Spectroscopy

, Volume 84, Issue 6, pp 986–994 | Cite as

Upconversion of IR Radiation in a KGd(WO4)2 Crystal on Erbium and Thulium Ions in Trace Concentrations: Change of Excitation Schemes and Energy Transfer Through the Crystal Lattice

  • I. A. Khodasevich
  • A. A. Kornienko
  • P. P. Pershukevich
  • V. A. Aseev
  • M. A. Khodasevich
  • A. S. Grabtchikov

Data on the observation of simultaneous upconversion on trace erbium and thulium ions in a KGd(WO4)2 crystal excited by IR radiation with the wavelength near 806 nm are presented. The change of excitation schemes with an increase in pumping level and participation of the crystal matrix in the energy transfer from erbium to thulium ions are discussed.


rare-earth ions erbium thulium upconversion KGW trace concentration 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    W. Koechner, Solid-State Laser Engineering, Springer (2006)Google Scholar
  2. 2.
    T. T. Basiev, Usp. Fiz. Nauk, 169, 1149–1155 (1999).CrossRefGoogle Scholar
  3. 3.
    A. S. Grabtchikov, A. N. Kuzmin, V. A. Lisinetskii, G. I. Ryabtsev, V. A. Orlovich, and A. A. Demidovich, Appl. Phys. Lett., 75, 3742–3744 (1999).ADSCrossRefGoogle Scholar
  4. 4.
    H. M. Pask, Progress Quantum Electron., 27, 3–56 (2003).ADSCrossRefGoogle Scholar
  5. 5.
    I. A. Khodasevich, A. A. Kornienko, E. B. Dunina, and A. S. Grabtchikov, Opt. Spektrosk., 115, 372–382 (2013).CrossRefGoogle Scholar
  6. 6.
    J. J. Neto, Ch. Artlett, A. Lee, J. Lin, D. Spence, J. Piper, N. U. Wetter, and H. Pask, Opt. Mater. Express, 4, 889 (2014).CrossRefGoogle Scholar
  7. 7.
    R. Peretti, A.-M. Jurdyc, B. Jacquier, C. Gonnet, A. Pastouret, E. Burov, and O. Cavani, Opt. Express, 18, 20455–20460 (2010).ADSCrossRefGoogle Scholar
  8. 8.
    I. A. Khodasevich, A. S. Grabtchikov, A. A. Kornienko, and E. B. Dunina, Opt. Spektrosk., 119, 734–740 (2015).CrossRefGoogle Scholar
  9. 9.
    S. Tanabe, K. Suzuki, N. Soga, and T. Hanada, J. Opt. Soc. Am. B, 11, 933–942 (1994).Google Scholar
  10. 10.
    M. Rico, M. C. Pujol, F. Dıaz, and C. Zaldo, Appl. Phys. B, 72, 157–162 (2001).ADSCrossRefGoogle Scholar
  11. 11.
    M. C. Pujol, M. Rico, C. Zaldo, R. Sole, V. Nikolov, X. Solans, M. Aguilo, and F. Diaz, Appl. Phys. B, 68, 187–197 (1999).ADSCrossRefGoogle Scholar
  12. 12.
    F. Gueell, X. Mateos, J. Gavalda, R. Sole, M. Aguilo, F. Diaz, and J. Massons, J. Lumin., 106, 109–114 (2004).CrossRefGoogle Scholar
  13. 13.
    R. Lisieckie, W. Ryba-Romanovski, and T. Lukasiewicz, Appl. Phys., 81B, 43–47 (2005).ADSCrossRefGoogle Scholar
  14. 14.
    N. S. Poluektov, N. P. Efryushina, and S. A. Gava, Determination of Microquantities of Lanthanides from the Luminescence of Crystal Phosphors [in Russian], Naukova Dumka, Kiev (1976).Google Scholar
  15. 15.
    F. Auzel, Chem. Rev., 104, 139–173 (2004).CrossRefGoogle Scholar
  16. 16.
    S. Georgescu, O. Toma, C. Florea, and C. Naud, J. Lumin., 101, 87–99 (2003).Google Scholar
  17. 17.
    S. Georgescu, V. Lupei, A. Petraru, C. Hapenciuc, C. Florea, C. Naud, and C. Porte, J. Lumin., 93, 281 (2001).CrossRefGoogle Scholar
  18. 18.
    I. A. Khodasevich, A. A. Kornienko, E. B. Dunina, and A. S. Grabtchikov, Zh. Prikl. Spektrosk., 79, No. 1, 45–52 (2012) [I. A. Khodasevich, A. A. Kornienko, E. B. Dunina, A. S. Grabtchikov, J. Appl. Spectrosc., 79, No. 1, 38–45 (2012)].Google Scholar
  19. 19.
    A. A. Kornienko, L. A. Fomicheva, and E. B. Dunina, Mater. Sci.-Tech. Conf. "Quantum Electronics" [in Russian], November 18–21, 2013; Belarusian State University Publishing House, Minsk (2013), pp. 59–60.Google Scholar
  20. 20.
    E. B. Dunina and A. A. Kornienko, Opt. Spektrosk., 116, 55–61 (2014).CrossRefGoogle Scholar
  21. 21.
    I. A. Khodasevich, A. A. Kornienko, E. B. Dunina, and A. S. Grabtchikov, Zh. Prikl. Spektrosk., 81, No. 6, 966–969 (2014) [I. A. Khodasevich, A. A. Kornienko, E. B. Dunina, and A. S. Grabtchikov, J. Appl. Spectrosk., 81, No. 6, 1056–1059 (2015)].Google Scholar
  22. 22.
    R. Scheps, Prog. Quant. Electr., 20, 271–358 (1996).ADSCrossRefGoogle Scholar
  23. 23.
    G. C. Jones and S. N. Houde-Walter, J. Opt. Soc. Am. B, 22, 825–830 (2005).Google Scholar
  24. 24.
    Ya. Yu, Zh. Wu, and S. Zhang, J. Alloys and Compounds, 302, 204–208 (2000).Google Scholar
  25. 25.
    M. Pollnau, D. R. Gamelin, S. R. Luethi, H. U. Guedel, and M. P. Hehlen, Phys. Rev. B, 61, 3337–3346 (2000).ADSCrossRefGoogle Scholar
  26. 26.
    G. Y. Chen, Y. Liu, Y. G. Zhang, G. Somesfalean, Z. G. Zhang, Q. Sun, and F. P. Wang, Appl. Phys. Lett., 91, No. 13, 133103(1–3) (2007).Google Scholar
  27. 27.
    F. Wang, Y. Han, C. S. Lim, Y. Lu, J. Wang, J. Xu, H. Chen, C. Zhang, M. Hong, and X. Liu, Nature, 463, No. 7284, 1061–1065 (2010).ADSCrossRefGoogle Scholar
  28. 28.
    D. Solis, E. De la Rosa, O. Meza, L. A. Diaz-Torres, P. Salas, and C. Angeles-Chavez, J. Appl. Phys., 108, 023103-1–023103-93 (2010).Google Scholar
  29. 29.
    Q. Lü, Y. Wu, A. Li, Y. Wang, Y. Gao, and H. Peng, Mater. Sci. Eng. B, 176, 1041–1046 (2011).CrossRefGoogle Scholar
  30. 30.
    M. Marin-Dobrincic, E. Cantelar, and F. Cusso, Opt. Mater. Express, 2, 1529–1537 (2012).CrossRefGoogle Scholar
  31. 31.
    C. F. Gainer, Gi han S. Joshua, C. R. De Silva, and M. Romanowski, J. Mater. Chem., 21, 18530–18533 (2011).Google Scholar
  32. 32.
    T. Passuello, F. Piccinelli, M. Pedroni, M. Bettinelli, F. Mangiarini, R. Naccache, F. Vetrone, J. A. Capobianco, and A. Speghini, Opt. Mater., 33, No. 4, 643–646 (2011).ADSCrossRefGoogle Scholar
  33. 33.
    G. E. Malashkevich, M. V. Korzhik, M. G. Livshits, V. B. Pavlenko, A. L. Blinov, and M. A. Borik, Phys. Chem. Glasses, 15, 675–686 (1989).Google Scholar
  34. 34.
    B. Cao, J. Wu, Xu. Wang, Ya. He, Zh. Feng, and B. Dong, Sensors, 15, 30981–30990 (2015).Google Scholar
  35. 35.
    M. A. Khodasevich, V. A. Aseev, Yu. A. Varaksa, E. V. Kolobkova, and G. V. Sinitsyn, Mater. Phys. Mech., 24, 18–23 (2015).Google Scholar
  36. 36.
    K. H. Esbensen, P. Geladi, Principal Component Analysis: Concept, Geometrical Interpretation, Mathematical Background, Algorithms, History, Practice, Comprehensive Chemometrics, Elsevier, Oxford, 2, 211–226 (2009).Google Scholar
  37. 37.
    M. Khodasevich, Y. Varaksa, G. Sinitsyn, V. Aseev, M. Demesh, and A. Yasukevich, J. Lumin., 187, 295–297 (2017).Google Scholar
  38. 38.
    V. A. Aseev, Yu. A. Varaksa, E. V. Kolobkova, G. V. Sinitsyn, and M. A. Khodasevich, Opt. Spektrosk., 118, 760–762 (2015).Google Scholar
  39. 39.
    M. J. Weber, Phys. Rev. B, 4, 2932–2939 (1971).ADSCrossRefGoogle Scholar
  40. 40.
    L. A. Rieseberg and H. W. Moos, Phys. Rev., 174, 429–438 (1968).ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • I. A. Khodasevich
    • 1
  • A. A. Kornienko
    • 2
  • P. P. Pershukevich
    • 1
  • V. A. Aseev
    • 3
  • M. A. Khodasevich
    • 1
  • A. S. Grabtchikov
    • 1
  1. 1.B. I. Stepanov Institute of PhysicsNational Academy of Sciences of BelarusMinskBelarus
  2. 2.Vitebsk State Technological UniversityVitebskBelarus
  3. 3.University ITMOSt. PetersburgRussia

Personalised recommendations