Journal of Applied Spectroscopy

, Volume 84, Issue 6, pp 979–985 | Cite as

Raman Spectra of Graphene Synthesized by Chemical Vapor Deposition from Decane

  • M. S. Tivanov
  • E. A. Kolesov
  • O. V. Korolik
  • A. M. Saad
  • N. G. Kovalchuk
  • I. V. Komissarov
  • V. A. Labunov
  • M. Opielak
  • P. Zukowski
  • T. N. Koltunowicz

Raman spectroscopy was used to study the structural properties of graphene synthesized by chemical vapor deposition using decane (C10H22) as a precursor at various hydrogen concentrations. Reduction of the carrier gas flow rate from 150 cm3/min to zero changes the average spacing between the defects from 53 to 212 nm and the average grain size from 87 to 798 nm and changes the uniformity and continuity of the graphene layer. The obtained relationships can be used to control the defectiveness, homogeneity, and continuity of the graphene layer of the coating during synthesis by this method.


graphene chemical vapor deposition decane Raman spectroscopy defect 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    H. G. Craighead and P. L. McEuen, Science, 315, 490–493 (2007).ADSCrossRefGoogle Scholar
  2. 2.
    A. A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan, F. Miao, and C. N. Lau, Nano Lett., 8, 902–907 (2008).ADSCrossRefGoogle Scholar
  3. 3.
    K. I. Bolotin, K. J. Sikes, Z. Jiang, M. Klima, G. Fudenberg, J. Hone, Ph Kim, and H. L. Stormer, Solid State Commun., 146, 351–355 (2008).Google Scholar
  4. 4.
    K. S. Novoselov, A. K. Geim, S. V. Morozov, K. S. D. Jiang, Y. Zhang, S. A. Dubonos, I. V. Grigorieva, and A. A. Firsov, Science, 306, 666–669 (2004).ADSCrossRefGoogle Scholar
  5. 5.
    H. C. Cheng, R. J. Shiue, C. C. Tsai, W. H. Wang, and Y. T. Chen, ACS Nano, 5, 2051–2059 (2011).CrossRefGoogle Scholar
  6. 6.
    P. W. Sutter, J.-I. Flege, and E. A. Sutter, Nat. Mater., 7, 406–411 (2008).ADSCrossRefGoogle Scholar
  7. 7.
    S. Bhaviripudi, X. Jia, M. S. Dresselhaus, and J. Kong, Nano Lett., 10, 4128–4133 (2010).ADSCrossRefGoogle Scholar
  8. 8.
    J. Coraux, T. N. Plasa, C. Busse, and T. Michely, New J. Phys., 10043033 (2008).Google Scholar
  9. 9.
    S. Y. Kwon, C. V. Ciobanu, V. Petrova, V. B. Shenoy, J. Bareno, V. Gambin, I. Petrov, and S. Kodambaka, Nano Lett., 9, 3985–3990 (2009).ADSCrossRefGoogle Scholar
  10. 10.
    A. Reina, S. Thiele, X. T. Jia, S. Bhaviripudi, M. S. Dresselhaus, J. A. Schaefer, and J. Kong, Nano Res., 2, 509–516 (2009).CrossRefGoogle Scholar
  11. 11.
    W. Song, C. Jeon, S. Y. Kim, Y. Kim, S. H. Kim, S. I. Lee, D. S. Jung, M. W. Jung, K. S. An, and C. Y. Park, Carbon, 68, 87–94 (2014).CrossRefGoogle Scholar
  12. 12.
    S. Bae, H. Kim, Y. Lee, X. Xu, J. S. Park, Y. Zheng, J. Balakrishnan, T. Lei, H. R. Kim, Y. I. Song, and Y. J. Kim, Nat. Nanotech., 5, 574–578 (2010).ADSCrossRefGoogle Scholar
  13. 13.
    I. V. Komissarov, N. G. Kovalchuk, E. A. Kolesov, M. S. Tivanov, O. V. Korolik, A. V. Mazanik, Yu. P. Shaman, A. S. Basaev, V. A. Labunov, S. L. Prischepa, N. I. Kargin, R. V. Ryzhuk, and S. A. Shostachenko, Phys. Proc., 72, 450–454 (2015).ADSCrossRefGoogle Scholar
  14. 14.
    J. M. Lemieux, Thermal Decomposition of Molecules Relevant to Combustion and Chemical Vapor Deposition by Flash Pyrolysis Time-of-Flight Mass Spectrometry, PhD Thesis, University of Riverside, Riverside, CA, USA (2013).Google Scholar
  15. 15.
    C. P. Fenimore, Proc. Int. Symp. Combust., 13, 373–380 (1971).Google Scholar
  16. 16.
    R. T. Bise, H. Choi, and D. M. Neumark, J. Chem. Phys., 111, 4923–4932 (1999).Google Scholar
  17. 17.
    I. V. Komissarov, N. G. Kovalchuk, V. A. Labunov, K. V. Girel, O. V. Korolik, M. S. Tivanov, A. Lazauskas, M. Andrulevičius, T. Tamulevičius, V. Grigaliūnas, Š. Meškinis, S. Tamulevičius, and S. L. Prischepa, Beilstein J. Nanotechnol., 8, 145–158 (2017).CrossRefGoogle Scholar
  18. 18.
    K. Celebi, Chemical Vapor Deposition of Graphene on Copper, PhD Thesis, Swiss Federal Institute of Technology, Zurich, Switzerland (2013).Google Scholar
  19. 19.
    A. Gelb and M. Cardillo, Surf. Sci., 59, 128–140 (1976).ADSCrossRefGoogle Scholar
  20. 20.
    A. Gelb, Surf. Sci., 64, 197–208 (1977).ADSCrossRefGoogle Scholar
  21. 21.
    I. Vlassiouk, M. Regmi, P. Fulvio, S. Dai, P. Datskos, G. Eres, and S. Smirnov, ACS Nano, 5, 6069–6076 (2011).CrossRefGoogle Scholar
  22. 22.
    M. Losurdo, M. M. Giangregorio, P. Capezzuto, and G. Bruno, Phys. Chem. Chem. Phys., 13, 20836–20843 (2011).CrossRefGoogle Scholar
  23. 23.
    J.-W. Snoeck, G. F. Froment, and M. Fowles, J. Catal., 169, 240–249 (1997).CrossRefGoogle Scholar
  24. 24.
    A. Becker, Z. Hu, and K. J. Huttinger, Fuel, 79, 1573–1580 (2000).CrossRefGoogle Scholar
  25. 25.
    S. Garaj, W. Hubbard, and J. A. Golovchenko, Appl. Phys. Lett., 97, 183103 (2010).ADSCrossRefGoogle Scholar
  26. 26.
    L. M. Malard, J. Nilsson, D. C. Elias, J. C. Brant, F. Plentz, E. S. Alves, A. C. Neto, and M. A. Pimenta, Phys. Rev. B, 76, 201401(R) (2007).Google Scholar
  27. 27.
    M. S. Dresselhaus, A. Jorio, M. Hofmann, G. Dresselhaus, and R. Saito, Nano Lett., 10, 751–758 (2010).ADSCrossRefGoogle Scholar
  28. 28.
    A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. S. Novoselov, S. Roth, and A. K. Geim, Phys. Rev. Lett., 97, 187401 (2006).ADSCrossRefGoogle Scholar
  29. 29.
    R. P. Vidano, D. B. Fischbach, L. J. Willis, and T. M. Loehr, Solid State Commun., 39, 341–344 (1981).ADSCrossRefGoogle Scholar
  30. 30.
    F. Tuinstra and J. Koenig, J. Chem. Phys., 53, 1126–1130 (1970).Google Scholar
  31. 31.
    A. C. Ferrari and D. M. Basko, Nat. Nanotech., 8, 235–246 (2013).Google Scholar
  32. 32.
    Y. Hao, Y. Wang, and L. Wang, Small, 6, 195–200 (2010).CrossRefGoogle Scholar
  33. 33.
    L. G. Cançado, A. Jorio, E. M. Ferreira, F. Stavale, C. A. Achete, R. B. Capaz, M. V. O. Moutinho, A. Lombardo, T. S. Kulmala, and A. C. Ferrari, Nano Lett., 11, 3190–3196 (2011).ADSCrossRefGoogle Scholar
  34. 34.
    L. G. Cançado, K. Takai, T. Enoki, M. Endo, Y. A. Kim, H. Mizusaki, N. L. Speziali, A. Jorio, and M. A. Pimenta, Carbon, 46, 272–275 (2008).CrossRefGoogle Scholar
  35. 35.
    E. H. Hasdeo, A. R. T. Nugraha, M. S. Dresselhaus, and R. Saito, Fermi Energy Dependence of First- and Second-Order Raman Spectra in Graphene: Kohn Anomaly and Quantum Interference Effect, arXiv:1605.02837 (2016).Google Scholar
  36. 36.
    M. Bruna, A. K. Ott, M. Ijäs, D. Yoon, U. Sassi, and A. C. Ferrari, ACS Nano, 8, 7432–7441 (2014).CrossRefGoogle Scholar
  37. 37.
    A. Eckmann, A. Felten, and A. Mishchenko, Nano Lett., 12, 3925–3930 (2012).ADSCrossRefGoogle Scholar
  38. 38.
    X. Zhang, L. Wang, J. Xin, B. I. Yakobson, and F. Ding, J. Am. Chem. Soc., 136, 3040–3047 (2014).Google Scholar
  39. 39.
    E. Fromm and H. Jehn, Bull. Alloy Phase Diagram, 5, 324–326 (1984).Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • M. S. Tivanov
    • 1
  • E. A. Kolesov
    • 1
  • O. V. Korolik
    • 1
  • A. M. Saad
    • 2
  • N. G. Kovalchuk
    • 3
  • I. V. Komissarov
    • 3
  • V. A. Labunov
    • 3
  • M. Opielak
    • 4
  • P. Zukowski
    • 5
  • T. N. Koltunowicz
    • 5
  1. 1.Belarusian State UniversityMinskBelarus
  2. 2.Al-Balqa Applied UniversityAmmanJordan
  3. 3.Belarusian State University of Informatics and RadioelectronicsMinskBelarus
  4. 4.The State School of Higher Education in ChelmChelmPoland
  5. 5.Lublin University of TechnologyLublinPoland

Personalised recommendations