Journal of Applied Spectroscopy

, Volume 84, Issue 6, pp 954–959 | Cite as

Annihilation Delayed Fluorescence of Indole and Its Derivatives in Aqueous Solution

  • A. A. Sukhodola

Spectral and kinetic characteristics of annihilation delayed fluorescence (ADF) of indole and its derivatives (5-methylindole, N-methylindole) were measured in aqueous solutions at room temperature. ADF spectra of indole and 5-methylindole consisted of two bands with wavelength maxima at 350 and 425 nm for indole and 350 and 390 nm for 5-methylindole. The short-wavelength band was due to ADF of monomers and coincided with the fast fluorescence spectrum. The long-wavelength band was attributed to ADF of excimers, the excited singlet states of which were populated by annihilation of triplet excimers. Triplet states of excimers were formed by collisions of molecules in triplet and ground states. The ADF spectrum of N-methylindole consisted of only the short-wavelength ADF band of monomers (λ = 352 nm). Lifetimes of monomer and excimer triplet states were estimated from the ADF kinetics.


annihilation delayed fluorescence long-lasting luminescence kinetics triplet states indole derivatives excimer 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    V. M. Mashul′, E. M. Zaitseva, and D. G. Shcherbin, Biofizika, 45, 965–989 (2000).Google Scholar
  2. 2.
    V. M. Mashul′, Yu. S. Ermolaev, and S. V. Konev, Zh. Prikl. Spektrosk., 32, 903–907 (1980).Google Scholar
  3. 3.
    A. P. Demchenko, Luminescence and Dynamics of Protein Structure [in Russian], Naukova Dumka, Kiev (1989).Google Scholar
  4. 4.
    G. B. Strambini and M. Gonnellli, Biochemistry, 34, 13847–13857 (1995).CrossRefGoogle Scholar
  5. 5.
    C. A. Parker, Photoluminescence of Solutions with Applications to Photochemistry and Analytical Chemistry, Elsevier, New York (1968), 544 pp.Google Scholar
  6. 6.
    C. A. Parker and C. G. Hatchard, Trans. Faraday Soc., 59, 284–295 (1963).CrossRefGoogle Scholar
  7. 7.
    G. B. Strambini and M. Gonnelli, J. Am. Chem. Soc., 117, 7646–7651 (1995).CrossRefGoogle Scholar
  8. 8.
    G. B. Strambini, B. A. Kerwin, B. D. Mason, and M. Gonnelli, Photochem. Photobiol., 80, 462–470 (2004).CrossRefGoogle Scholar
  9. 9.
    C. J. Fischer, A. Gafni, D. G. Steel, and J. A. Schauerte, J. Am. Chem. Soc., 124, 10359–10366 (2002).CrossRefGoogle Scholar
  10. 10.
    H. Benten, J. Guo, H. Ohkita, S. Ito, M. Yamamoto, N. Sakumoto, K. Hori, Y. Tohda, and K. Tani, J. Phys. Chem. B, 111, 10905–10914 (2007).CrossRefGoogle Scholar
  11. 11.
    S. T. Hoffmann, P. Schrogel, M. Rothmann, R. Q. Albuquerque, P. Strohriegl, and A. Kohler, J. Phys. Chem. B, 115, 414–421 (2011).CrossRefGoogle Scholar
  12. 12.
    H. K. Kang, D. E. Kang, B. H. Boo, S. G. Yoo, J. K. Lee, and E. S. Lim, J. Phys. Chem. A, 109, 6799–6804 (2005).CrossRefGoogle Scholar
  13. 13.
    J. Cai and E. C. Lim, J. Chem. Phys., 97, 3892–3896 (1992).ADSCrossRefGoogle Scholar
  14. 14.
    S. H. Modano, J. Dresner, and E. C. Lim, J. Phys. Chem., 95, 9144–9151 (1991).CrossRefGoogle Scholar
  15. 15.
    R. Klein, I. Tatischeff, M. Bazin, and R. Santus, J. Phys. Chem., 85, 670–677 (1981).CrossRefGoogle Scholar
  16. 16.
    A. Kawalska-Baron, M. Chan, K. Galecki, and S. Wysocki, Spectrochim. Acta, Part A, 98, 282–289 (2012).ADSCrossRefGoogle Scholar
  17. 17.
    D. V. Bent and E. Hayon, J. Am. Chem. Soc., 97, 2612–2619 (1975).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.B. I. Stepanov Institute of PhysicsNational Academy of Sciences of BelarusMinskBelarus

Personalised recommendations