Journal of Applied Spectroscopy

, Volume 84, Issue 6, pp 948–953 | Cite as

Optical Band Gap and Photoluminescence Studies of Samarium-Doped Barium Zirconate Perovskite Prepared by Solid State Reaction Route


The structural and optical properties of Ba1–xSm2x/3ZrO3 (x = 0.02, 0.04, 0.06, 0.08, 0.10) ceramics prepared by the solid-state reaction method are considered. The x-ray diffraction data confirm the cubic perovskite phase of all the compositions with space group Pm \( \overline{3}\hbox{--} \mathrm{m} \). The effect of Sm3+ substitution on the optical band gap and photoluminescence properties of barium zirconate are discussed. The optical band gap decreases from 3.43 to 2.98 eV with increasing Sm3+ content. The Urbach energy has been found to increase with rise in concentration of dopant species. The photoluminescence spectra show an intense violet–blue emission characteristic of the barium zirconate perovskite. Visible emission due to intra-4f transitions of Sm3+ ions from 4G5/2 higher excited state to 6Hj ( j = 5/2, 7/2, 9/2 etc.) ground states has been observed in the range of 550–700 nm.


ceramics perovskites optical band gap photoluminescence 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    C. M. Reddy, B. D. P Raju, N. J. Sushma, N. S. Dhoble, and S. J. Dhoble, Renew. Sustain. Energy Rev., 5, 1566–1584 (2015).Google Scholar
  2. 2.
    A. Kumari, V. K. Rai, and K. Kumar, Spectrochim. Acta A, 127, 98–101 (2014).ADSCrossRefGoogle Scholar
  3. 3.
    Y. Yuana, X. Zhanga, L. Liua, X. Jianga, J. Lva, Z. Lia, and Z. Zoua, Int. J. Hydrogen Energy, 33, 5941–5946 (2008).CrossRefGoogle Scholar
  4. 4.
    L. S. Cavalcante, V. M. Longo, M. Zampieri, J. W. Espinosa, P. S. Pizani, J. R. Sambrano, J. A. Varela, E. Longo, M. L. Simões, and C. A. Paskocimas, J. Appl. Phys., 103, 063527 (2008).ADSCrossRefGoogle Scholar
  5. 5.
    R. Borja-Urby, L. A. D. Torres, P. Salas, C. A. Chavez, and O. Meza, Mater. Sci. Eng. B, 176, 1388–1392 (2011).CrossRefGoogle Scholar
  6. 6.
    J. Oliva, E. De la Rosa, L. A. Diaz-Torres, P. Salas, and C. Ángeles-Chavez, J. Appl. Phys., 104, 023505 (2008).ADSCrossRefGoogle Scholar
  7. 7.
    A. C. Larson and R.B. Von Dreele, General Structure Analysis System (GSAS), LAUR, 86–748 (2004).Google Scholar
  8. 8.
    I. C. Nogueira, L. S. Cavalcante, P. F. S. Pereira, M. M. de Jesus, J. M. Rivas Mercury, N. C. Batista, M. Siu Lid, and E. Longo, J. Appl. Crystallogr., 46, 1434–1446 (2013).CrossRefGoogle Scholar
  9. 9.
    L. S. Cavalcante, J. C. Sczancoski, V. M. Longo, F. S. De Vicente, J. R. Sambrano, A. T. de Figueiredo, C. J. Dalmaschio, M. Siu Li, J. A. Varela, and E. Longo, Opt. Commun., 281, 3715–3720 (2008).ADSCrossRefGoogle Scholar
  10. 10.
    V. M. Longo, L. S. Cavalcante, A. T. de Figueiredo, and L. P. S. Santos, Appl. Phys. Lett., 90, 091906 (2007).ADSCrossRefGoogle Scholar
  11. 11.
    M. L. Moreira, M. F. C. Gurgel, G. P. Mambrini, E. R. Leite, P. S. Pizani, J. A. Varela, and E. Longo, J. Phys. Chem. A, 112, 8938–8942 (2008).CrossRefGoogle Scholar
  12. 12.
    S. K. Gupta, P. S. Ghosh, N. Pathak, A. Aryab, and V. Natarajana, RSC Adv., 4, 29202 (2014).CrossRefGoogle Scholar
  13. 13.
    M. Borah and D. Mohanta, J. Appl. Phys., 112, 124321 (2012).ADSCrossRefGoogle Scholar
  14. 14.
    N. Kumari, A. Ghosh, S. Tewari, and A. Bhattacharjee, Indian J. Phys., 88, 65–70 (2014).ADSCrossRefGoogle Scholar
  15. 15.
    S. Parida, A. Satapathy, E. Sinha, A. Bisen, and S. K. Rout, Metall. Mater. Trans. A, 46A, 1277–1286 (2015).ADSCrossRefGoogle Scholar
  16. 16.
    P. G. Sundell, M. E. Björketun, and G. Wahnström, Phys. Rev. B, 73, 104112 (2006).ADSCrossRefGoogle Scholar
  17. 17.
    R. Terki, H. Feraoun, G. Bertrand, and H. Aourag, Phys. Status Solidi, 242, 1054–1062 (2005).CrossRefGoogle Scholar
  18. 18.
    P. Barik, T. K. Kundu, and S. Ram, Philos. Mag. Lett., 89, 545–555 (2009).ADSCrossRefGoogle Scholar
  19. 19.
    G. E. Malashkevich, A. V. Semchenko, A. A. Sukhodola, A. P. Stupak, A. V. Sukhodolov, B. V. Plyushch, V. V. Sidski, and G. A. Denisenko, Phys. Solid State, 50, 1464–1472 (2008).ADSCrossRefGoogle Scholar
  20. 20.
    G. E. Malashkevich, I. M. Mel'nichenko, E. N. Poddenezhny, and A. V. Semchenko, Phys. Solid State, 40, 420–426 (1998).ADSCrossRefGoogle Scholar
  21. 21.
    S. K. Raut, N. S. Dhoble, K. Park, and S. J. Dhoble, Mater. Chem. Phys., 147, 594–603 (2014).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Birla Institute of TechnologyRanchiIndia

Personalised recommendations