Advertisement

Journal of Applied Spectroscopy

, Volume 84, Issue 6, pp 929–938 | Cite as

Comparison of Degrees of Potential-Energy-Surface Anharmonicity for Complexes and Clusters with Hydrogen Bonds

  • E. N. Kozlovskaya
  • I. Yu. Doroshenko
  • V. E. Pogorelov
  • Ye. V. Vaskivskyi
  • G. A. Pitsevich
Article

Previously calculated multidimensional potential-energy surfaces of the MeOH monomer and dimer, water dimer, malonaldehyde, formic acid dimer, free pyridine-N-oxide/trichloroacetic acid complex, and protonated water dimer were analyzed. The corresponding harmonic potential-energy surfaces near the global minima were constructed for series of clusters and complexes with hydrogen bonds of different strengths based on the behavior of the calculated multidimensional potential-energy surfaces. This enabled the introduction of an obvious anharmonicity parameter for the calculated potential-energy surfaces. The anharmonicity parameter was analyzed as functions of the size of the analyzed area near the energy minimum, the number of points over which energies were compared, and the dimensionality of the solved vibrational problem. Anharmonicity parameters for potential-energy surfaces in complexes with strong, medium, and weak H-bonds were calculated under identical conditions. The obtained anharmonicity parameters were compared with the corresponding diagonal anharmonicity constants for stretching vibrations of the bridging protons and the lengths of the hydrogen bridges.

Keywords

H-bond potential-energy surface anharmonicity 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. Ischtwan and M. Collins, J. Chem. Phys., 100, 8080–8088 (1994).ADSCrossRefGoogle Scholar
  2. 2.
    T. Ho and H. Rabitz, J. Chem. Phys., 104, 2584–2597 (1996).ADSCrossRefGoogle Scholar
  3. 3.
    P. R. P. Barreto, A. F. Albernaz, and F. Palazzetti, Int. J. Quantum Chem., 112, 834–847 (2012).CrossRefGoogle Scholar
  4. 4.
    E. J. Saavedra, S. A. A. Fernando, D. Suvire, M. A. Zamora, M. L. Freile, and R. D. Enriz, Int. J. Quantum Chem., 112, 2382–2391 (2012).CrossRefGoogle Scholar
  5. 5.
    Yu. N. Panchenko, V. I. Pupyshev, and A. V. Abramenkov, J. Mol. Struct., 130, 355–359 (1985).ADSCrossRefGoogle Scholar
  6. 6.
    Yu. N. Panchenko, V. I. Pupyshev, and A. V. Abramenkov, J. Mol. Struct., 140, 87–92 (1985).ADSCrossRefGoogle Scholar
  7. 7.
    E. Van Leuken, G. Brocks, and P. E. S. Wormer, Chem. Phys., 110, 365–373 (1986).ADSCrossRefGoogle Scholar
  8. 8.
    N. B. Balabanov and K. A. Peterson, J. Chem. Phys., 120, 6585–6592 (2004).ADSCrossRefGoogle Scholar
  9. 9.
    R. Prosmiti, S. Lopez-Lopez, and A. Garcia-Vela, J. Chem. Phys., 120, 6471–6477 (2004).ADSCrossRefGoogle Scholar
  10. 10.
    Y. Zhou and D. Xiea, J. Chem. Phys., 123, 134323 (2005).ADSCrossRefGoogle Scholar
  11. 11.
    B. Lowe, M. Pilant, and W. Rundell, SIAM J. Math. Anal., 23, 482–504 (1992).MathSciNetCrossRefGoogle Scholar
  12. 12.
    R. Fabiano, R. Knobel, and B. Lowe, IMA J. Numer. Anal., 15, 75–88 (1995).MathSciNetCrossRefGoogle Scholar
  13. 13.
    H. V. Von Geramb, Quantum Inversion Theory and Applications, Springer, New York (1994).MATHGoogle Scholar
  14. 14.
    T. Ho and H. J. Rabitz, Phys. Chem., 97, 13447–13456 (1993).CrossRefGoogle Scholar
  15. 15.
    T. Ho, H. Rabitz, S. Choi, and M. J. Lester, Chem. Phys., 104, 1187–1202 (1996).ADSGoogle Scholar
  16. 16.
    D. Zhang and J. Light, J. Chem. Phys., 103, 9713–9720 (1995).ADSCrossRefGoogle Scholar
  17. 17.
    R. Baer and R. Kosloff, J. Phys. Chem., 99, 2534–2545 (1995).CrossRefGoogle Scholar
  18. 18.
    M. Shapiro, J. Phys. Chem., 100, 7859–7866 (1996).CrossRefGoogle Scholar
  19. 19.
    Z. Lu and H. Rabitz, Phys. Rev. A: At., Mol., Opt. Phys., 52, 1961–1967 (1995).ADSCrossRefGoogle Scholar
  20. 20.
    W. Zhu and H. Rabitz, J. Chem. Phys., 111, 472–480 (1999).Google Scholar
  21. 21.
    K. P. Lawley, I. Prigogine, and S. A. Rice, Ab initio Methods in Quantum Chemistry, Advances in Chemical Physics, 67, 69, Wiley, New York (1987).Google Scholar
  22. 22.
    L. Lain, A. Torre, M. Reguero, and C. Valdemoro, J. Mol. Struct.: THEOCHEM, 287, 47–53 (1993).Google Scholar
  23. 23.
    C. Valdemoro, M. Reguero, and L. Lain, Chem. Phys. Lett., 147, 219–222 (1988).ADSCrossRefGoogle Scholar
  24. 24.
    M. Reguero and C. Valdemoro, Basic Aspects of Quantum Chemistry, Elsevier, Amsterdam (1989).Google Scholar
  25. 25.
    I. Absar and A. J. Coleman, Chem. Phys. Lett., 39, 609–611 (1976).ADSCrossRefGoogle Scholar
  26. 26.
    D. J. Wales, Science, 293, No. 5537, 2067–2070 (2001).ADSCrossRefGoogle Scholar
  27. 27.
    D. J. Wales, J. Chem. Phys., 142, 130901 (2015).ADSCrossRefGoogle Scholar
  28. 28.
    D. Asenjo, J. D. Stevenson, D. J. Wales, and D. Frenkel, J. Phys. Chem. B, 117, 12717–12723 (2013).CrossRefGoogle Scholar
  29. 29.
    M. T. Oakley, R. L. Johnston, and D. Wales, Phys. Chem. Chem. Phys., 15, 3965–3976 (2013).CrossRefGoogle Scholar
  30. 30.
    W. Hermoso, N. B. Jaufeerally, P. Ramasami, and F. R. Ornellas, Int. J. Quantum Chem., 113, 112–118 (2013).CrossRefGoogle Scholar
  31. 31.
    A. B. McCoy, Int. J. Quantum Chem., 113, 366–374 (2013).CrossRefGoogle Scholar
  32. 32.
    F. Rao and A. Caflisch, J. Mol. Biol., 342, 299–306 (2004).CrossRefGoogle Scholar
  33. 33.
    F. Noe and S. Fischer, Curr. Opin. Struct. Biol., 18, 154–162 (2008).CrossRefGoogle Scholar
  34. 34.
    D. A. Evans and D. J. Wales, J. Chem. Phys., 118, 3891–3897 (2003).Google Scholar
  35. 35.
    G. S. Maciel, P. R. P. Barreto, F. Palazzetti, A. Lombardi, and V. Aquilanti, J. Chem. Phys., 129, 164302 (2008).ADSCrossRefGoogle Scholar
  36. 36.
    G. A. Pitsevich, A. E. Malevich, V. Sablinskas, I. Yu. Doroshenko, V. E. Pogorelov, E. N. Kozlovskaya, and V. Balevicius, Vest. Found. Fund. Res. [Vestn. Fonda Fundam. Issled.], 63, No. 1, 80–87 (2013).Google Scholar
  37. 37.
    G. A. Pitsevich, A. Malevich, I. Yu. Doroshenko, E. N. Kozlovskaya, V. Ye. Pogorelov, V. Shablinskas, and V. Balevichus, Spectrochim. Acta, Part A, 120, 585–594 (2014).Google Scholar
  38. 38.
    G. A. Pitsevich, A. Malevich, E. N. Kozlovskaya, I. Yu. Doroshenko, V. E. Pogorelov, V. Shablinskas, and V. Balevichus, Spectrochim. Acta, Part A, 145, 384–393 (2015).ADSCrossRefGoogle Scholar
  39. 39.
    G. A. Pitsevich, A. E. Malevich, E. N. Kozlovskaya, and U. U. Sapeshko, J. Spectrosc. Dyn., 4, 25 (2014).Google Scholar
  40. 40.
    G. Rauhut, J. Chem. Phys., 121, 9313–9322 (2004).ADSCrossRefGoogle Scholar
  41. 41.
    S. K. Burger and P. W. Ayers, J. Chem. Phys., 132, 234110 (2010).ADSCrossRefGoogle Scholar
  42. 42.
    M. R. Peterson, I. G. Csizmadia, and R. W. Sharpe, J. Mol. Struct.: THEOCHEM, 94, 127–135 (1983).ADSGoogle Scholar
  43. 43.
    P. Gomez, M. Fernandez, L. Sese, and V. Botella, J. Mol. Struct., 142, 315–318 (1986).ADSCrossRefGoogle Scholar
  44. 44.
    G. L. Sosa, N. Peruchena, R. H. Contreras, and E. A. Castro, J. Mol. Struct.: THEOCHEM, 401, 77–85 (1997).CrossRefGoogle Scholar
  45. 45.
    X. Luo and P. G. Mezey, Int. J. Quantum Chem., 41, 557–579 (1992).CrossRefGoogle Scholar
  46. 46.
    N. J. Wright and R. B. Gerber, J. Chem. Phys., 112, 2598–2604 (2000).ADSCrossRefGoogle Scholar
  47. 47.
    B. Temelso and G. C. Shields, J. Chem. Theory Comput., 7, 2804–2817 (2011).CrossRefGoogle Scholar
  48. 48.
    A. G. Csaszar, Wiley Interdiscip. Rev.: Comput. Mol. Sci., 2, 273–289 (2012).Google Scholar
  49. 49.
    V. Barone, M. Biczysko, and J. Bloino, Phys. Chem. Chem. Phys., 16, 1759–1787 (2014).CrossRefGoogle Scholar
  50. 50.
    G. M. Chaban, J. O. Jung, and R. B. Gerber, J. Phys. Chem. A, 104, 2772–2779 (2000).CrossRefGoogle Scholar
  51. 51.
    P. Meier, D. Oschetzki, R. Berger, and G. Rauhut, J. Chem. Phys., 140, 184111 (2014).ADSCrossRefGoogle Scholar
  52. 52.
    B. Njegic and M. S. Gordon, J. Chem. Phys., 129, 164107 (2008).ADSCrossRefGoogle Scholar
  53. 53.
    Z. Latajka, K. Morokuma, H. Ratajczak, and W. J. Orville-Thomas, J. Mol. Struct.: THEOCHEM, 135, 429–434 (1986).CrossRefGoogle Scholar
  54. 54.
    Z. Latajka, K. Morokuma, H. Ratajczak, and W. J. Orville-Thomas, J. Mol. Struct.: THEOCHEM, 146, 263–266 (1986).ADSCrossRefGoogle Scholar
  55. 55.
    Y. Bouteiller, Z. Latajka, H. Ratajczak, and S. Scheiner, J. Chem. Phys., 94, 2956–2961 (1991).ADSCrossRefGoogle Scholar
  56. 56.
    Y. Bouteiller and Z. Latajka, J. Mol. Struct., 322, 175–180 (1994).ADSCrossRefGoogle Scholar
  57. 57.
    Y. Bouteiller and Z. Latajka, J. Chem. Phys., 97, 145–149 (1992).ADSCrossRefGoogle Scholar
  58. 58.
    B. Silvi, R. Wieczorek, Z. Latajka, M. E. Alikhani, A. Dkhissi, and Y. Bouteiller, J. Chem. Phys., 111, 6671–6678 (1999).ADSCrossRefGoogle Scholar
  59. 59.
    Y. G. Smeyers, J. Mol. Struct., 107, 3–21 (1984).CrossRefGoogle Scholar
  60. 60.
    S. A. Manson, M. M. Law, I. A. Atkinson, and G. A. Thomson, Phys. Chem. Chem. Phys., 8, 2855–2865 (2006).CrossRefGoogle Scholar
  61. 61.
    T. Xie and J. M. Bowman, J. Chem. Phys., 117, 10487–10493 (2002).ADSCrossRefGoogle Scholar
  62. 62.
    E. Matito, D. Toffoli, and O. Christiansen, J. Chem. Phys., 130, 134104 (2009).ADSCrossRefGoogle Scholar
  63. 63.
    S. Rampino, J. Phys. Chem. A, 120, 4683–4692 (2016).CrossRefGoogle Scholar
  64. 64.
    M. S. Schuurman, W. D. Allen, P. V. R. Schleyer, and H. F. Schaefer III, J. Chem. Phys., 122, 104302 (2005).ADSCrossRefGoogle Scholar
  65. 65.
    F. Calvo, J. P. K. Doye, and D. J. Wales, J. Chem. Phys., 115, 9627–9636 (2001).ADSCrossRefGoogle Scholar
  66. 66.
    P. Botschwina, J. Chem. Soc., Faraday Trans. 2, 84, No. 9, 1263–1276 (1988).Google Scholar
  67. 67.
    G. A. Pitsevich, A. Malevich, E. N. Kozlovskaya, Yu. I. Doroshenko, V. Shablinskas, V. E. Pogorelov, D. Dovgal’, and V. Balevicius, Vib. Spectrosc., 79, 67–75 (2015).CrossRefGoogle Scholar
  68. 68.
    G. Pitsevich, A. Malevich, E. Kozlovskaya, E. Mahnach, I. Doroshenko, V. Pogorelov, L. G. M. Pettersson, V. Sablinskas, and V. Balevicius, J. Phys. Chem. A, 121, 2151–2165 (2017).CrossRefGoogle Scholar
  69. 69.
    S. Califano, Vibrational States, Wiley, New York (1976).Google Scholar
  70. 70.
    I. M. Mills, in: K. N. Rao and C. W. Mathews (Eds.), Molecular Spectroscopy: Modern Research, Academic Press, New York (1972).Google Scholar
  71. 71.
    Mathematica, Wolfram Research Inc.; http://www.wolfram.com/mathematica/
  72. 72.
    G. Pitsevich, A. Malevich, E. Kozlovskaya, E. Shalamberidze, I. Doroshenko, V. Pogorelov, E. Mahnach, V. Sapeshko, and V. Balevicius, J. Mol. Struct., 1139, 328–332 (2017).ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • E. N. Kozlovskaya
    • 1
  • I. Yu. Doroshenko
    • 2
  • V. E. Pogorelov
    • 2
  • Ye. V. Vaskivskyi
    • 2
  • G. A. Pitsevich
    • 1
  1. 1.Belarusian State UniversityMinskBelarus
  2. 2.Taras Shevchenko Kyiv National UniversityKyivUkraine

Personalised recommendations