Skip to main content

Advertisement

Log in

Comparison of Degrees of Potential-Energy-Surface Anharmonicity for Complexes and Clusters with Hydrogen Bonds

  • Published:
Journal of Applied Spectroscopy Aims and scope

Previously calculated multidimensional potential-energy surfaces of the MeOH monomer and dimer, water dimer, malonaldehyde, formic acid dimer, free pyridine-N-oxide/trichloroacetic acid complex, and protonated water dimer were analyzed. The corresponding harmonic potential-energy surfaces near the global minima were constructed for series of clusters and complexes with hydrogen bonds of different strengths based on the behavior of the calculated multidimensional potential-energy surfaces. This enabled the introduction of an obvious anharmonicity parameter for the calculated potential-energy surfaces. The anharmonicity parameter was analyzed as functions of the size of the analyzed area near the energy minimum, the number of points over which energies were compared, and the dimensionality of the solved vibrational problem. Anharmonicity parameters for potential-energy surfaces in complexes with strong, medium, and weak H-bonds were calculated under identical conditions. The obtained anharmonicity parameters were compared with the corresponding diagonal anharmonicity constants for stretching vibrations of the bridging protons and the lengths of the hydrogen bridges.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. J. Ischtwan and M. Collins, J. Chem. Phys., 100, 8080–8088 (1994).

    Article  ADS  Google Scholar 

  2. T. Ho and H. Rabitz, J. Chem. Phys., 104, 2584–2597 (1996).

    Article  ADS  Google Scholar 

  3. P. R. P. Barreto, A. F. Albernaz, and F. Palazzetti, Int. J. Quantum Chem., 112, 834–847 (2012).

    Article  Google Scholar 

  4. E. J. Saavedra, S. A. A. Fernando, D. Suvire, M. A. Zamora, M. L. Freile, and R. D. Enriz, Int. J. Quantum Chem., 112, 2382–2391 (2012).

    Article  Google Scholar 

  5. Yu. N. Panchenko, V. I. Pupyshev, and A. V. Abramenkov, J. Mol. Struct., 130, 355–359 (1985).

    Article  ADS  Google Scholar 

  6. Yu. N. Panchenko, V. I. Pupyshev, and A. V. Abramenkov, J. Mol. Struct., 140, 87–92 (1985).

    Article  ADS  Google Scholar 

  7. E. Van Leuken, G. Brocks, and P. E. S. Wormer, Chem. Phys., 110, 365–373 (1986).

    Article  ADS  Google Scholar 

  8. N. B. Balabanov and K. A. Peterson, J. Chem. Phys., 120, 6585–6592 (2004).

    Article  ADS  Google Scholar 

  9. R. Prosmiti, S. Lopez-Lopez, and A. Garcia-Vela, J. Chem. Phys., 120, 6471–6477 (2004).

    Article  ADS  Google Scholar 

  10. Y. Zhou and D. Xiea, J. Chem. Phys., 123, 134323 (2005).

    Article  ADS  Google Scholar 

  11. B. Lowe, M. Pilant, and W. Rundell, SIAM J. Math. Anal., 23, 482–504 (1992).

    Article  MathSciNet  Google Scholar 

  12. R. Fabiano, R. Knobel, and B. Lowe, IMA J. Numer. Anal., 15, 75–88 (1995).

    Article  MathSciNet  Google Scholar 

  13. H. V. Von Geramb, Quantum Inversion Theory and Applications, Springer, New York (1994).

    MATH  Google Scholar 

  14. T. Ho and H. J. Rabitz, Phys. Chem., 97, 13447–13456 (1993).

    Article  Google Scholar 

  15. T. Ho, H. Rabitz, S. Choi, and M. J. Lester, Chem. Phys., 104, 1187–1202 (1996).

    ADS  Google Scholar 

  16. D. Zhang and J. Light, J. Chem. Phys., 103, 9713–9720 (1995).

    Article  ADS  Google Scholar 

  17. R. Baer and R. Kosloff, J. Phys. Chem., 99, 2534–2545 (1995).

    Article  Google Scholar 

  18. M. Shapiro, J. Phys. Chem., 100, 7859–7866 (1996).

    Article  Google Scholar 

  19. Z. Lu and H. Rabitz, Phys. Rev. A: At., Mol., Opt. Phys., 52, 1961–1967 (1995).

    Article  ADS  Google Scholar 

  20. W. Zhu and H. Rabitz, J. Chem. Phys., 111, 472–480 (1999).

    Google Scholar 

  21. K. P. Lawley, I. Prigogine, and S. A. Rice, Ab initio Methods in Quantum Chemistry, Advances in Chemical Physics, 67, 69, Wiley, New York (1987).

  22. L. Lain, A. Torre, M. Reguero, and C. Valdemoro, J. Mol. Struct.: THEOCHEM, 287, 47–53 (1993).

    Google Scholar 

  23. C. Valdemoro, M. Reguero, and L. Lain, Chem. Phys. Lett., 147, 219–222 (1988).

    Article  ADS  Google Scholar 

  24. M. Reguero and C. Valdemoro, Basic Aspects of Quantum Chemistry, Elsevier, Amsterdam (1989).

    Google Scholar 

  25. I. Absar and A. J. Coleman, Chem. Phys. Lett., 39, 609–611 (1976).

    Article  ADS  Google Scholar 

  26. D. J. Wales, Science, 293, No. 5537, 2067–2070 (2001).

    Article  ADS  Google Scholar 

  27. D. J. Wales, J. Chem. Phys., 142, 130901 (2015).

    Article  ADS  Google Scholar 

  28. D. Asenjo, J. D. Stevenson, D. J. Wales, and D. Frenkel, J. Phys. Chem. B, 117, 12717–12723 (2013).

    Article  Google Scholar 

  29. M. T. Oakley, R. L. Johnston, and D. Wales, Phys. Chem. Chem. Phys., 15, 3965–3976 (2013).

    Article  Google Scholar 

  30. W. Hermoso, N. B. Jaufeerally, P. Ramasami, and F. R. Ornellas, Int. J. Quantum Chem., 113, 112–118 (2013).

    Article  Google Scholar 

  31. A. B. McCoy, Int. J. Quantum Chem., 113, 366–374 (2013).

    Article  Google Scholar 

  32. F. Rao and A. Caflisch, J. Mol. Biol., 342, 299–306 (2004).

    Article  Google Scholar 

  33. F. Noe and S. Fischer, Curr. Opin. Struct. Biol., 18, 154–162 (2008).

    Article  Google Scholar 

  34. D. A. Evans and D. J. Wales, J. Chem. Phys., 118, 3891–3897 (2003).

    Google Scholar 

  35. G. S. Maciel, P. R. P. Barreto, F. Palazzetti, A. Lombardi, and V. Aquilanti, J. Chem. Phys., 129, 164302 (2008).

    Article  ADS  Google Scholar 

  36. G. A. Pitsevich, A. E. Malevich, V. Sablinskas, I. Yu. Doroshenko, V. E. Pogorelov, E. N. Kozlovskaya, and V. Balevicius, Vest. Found. Fund. Res. [Vestn. Fonda Fundam. Issled.], 63, No. 1, 80–87 (2013).

  37. G. A. Pitsevich, A. Malevich, I. Yu. Doroshenko, E. N. Kozlovskaya, V. Ye. Pogorelov, V. Shablinskas, and V. Balevichus, Spectrochim. Acta, Part A, 120, 585–594 (2014).

  38. G. A. Pitsevich, A. Malevich, E. N. Kozlovskaya, I. Yu. Doroshenko, V. E. Pogorelov, V. Shablinskas, and V. Balevichus, Spectrochim. Acta, Part A, 145, 384–393 (2015).

    Article  ADS  Google Scholar 

  39. G. A. Pitsevich, A. E. Malevich, E. N. Kozlovskaya, and U. U. Sapeshko, J. Spectrosc. Dyn., 4, 25 (2014).

    Google Scholar 

  40. G. Rauhut, J. Chem. Phys., 121, 9313–9322 (2004).

    Article  ADS  Google Scholar 

  41. S. K. Burger and P. W. Ayers, J. Chem. Phys., 132, 234110 (2010).

    Article  ADS  Google Scholar 

  42. M. R. Peterson, I. G. Csizmadia, and R. W. Sharpe, J. Mol. Struct.: THEOCHEM, 94, 127–135 (1983).

    ADS  Google Scholar 

  43. P. Gomez, M. Fernandez, L. Sese, and V. Botella, J. Mol. Struct., 142, 315–318 (1986).

    Article  ADS  Google Scholar 

  44. G. L. Sosa, N. Peruchena, R. H. Contreras, and E. A. Castro, J. Mol. Struct.: THEOCHEM, 401, 77–85 (1997).

    Article  Google Scholar 

  45. X. Luo and P. G. Mezey, Int. J. Quantum Chem., 41, 557–579 (1992).

    Article  Google Scholar 

  46. N. J. Wright and R. B. Gerber, J. Chem. Phys., 112, 2598–2604 (2000).

    Article  ADS  Google Scholar 

  47. B. Temelso and G. C. Shields, J. Chem. Theory Comput., 7, 2804–2817 (2011).

    Article  Google Scholar 

  48. A. G. Csaszar, Wiley Interdiscip. Rev.: Comput. Mol. Sci., 2, 273–289 (2012).

    Google Scholar 

  49. V. Barone, M. Biczysko, and J. Bloino, Phys. Chem. Chem. Phys., 16, 1759–1787 (2014).

    Article  Google Scholar 

  50. G. M. Chaban, J. O. Jung, and R. B. Gerber, J. Phys. Chem. A, 104, 2772–2779 (2000).

    Article  Google Scholar 

  51. P. Meier, D. Oschetzki, R. Berger, and G. Rauhut, J. Chem. Phys., 140, 184111 (2014).

    Article  ADS  Google Scholar 

  52. B. Njegic and M. S. Gordon, J. Chem. Phys., 129, 164107 (2008).

    Article  ADS  Google Scholar 

  53. Z. Latajka, K. Morokuma, H. Ratajczak, and W. J. Orville-Thomas, J. Mol. Struct.: THEOCHEM, 135, 429–434 (1986).

    Article  Google Scholar 

  54. Z. Latajka, K. Morokuma, H. Ratajczak, and W. J. Orville-Thomas, J. Mol. Struct.: THEOCHEM, 146, 263–266 (1986).

    Article  ADS  Google Scholar 

  55. Y. Bouteiller, Z. Latajka, H. Ratajczak, and S. Scheiner, J. Chem. Phys., 94, 2956–2961 (1991).

    Article  ADS  Google Scholar 

  56. Y. Bouteiller and Z. Latajka, J. Mol. Struct., 322, 175–180 (1994).

    Article  ADS  Google Scholar 

  57. Y. Bouteiller and Z. Latajka, J. Chem. Phys., 97, 145–149 (1992).

    Article  ADS  Google Scholar 

  58. B. Silvi, R. Wieczorek, Z. Latajka, M. E. Alikhani, A. Dkhissi, and Y. Bouteiller, J. Chem. Phys., 111, 6671–6678 (1999).

    Article  ADS  Google Scholar 

  59. Y. G. Smeyers, J. Mol. Struct., 107, 3–21 (1984).

    Article  Google Scholar 

  60. S. A. Manson, M. M. Law, I. A. Atkinson, and G. A. Thomson, Phys. Chem. Chem. Phys., 8, 2855–2865 (2006).

    Article  Google Scholar 

  61. T. Xie and J. M. Bowman, J. Chem. Phys., 117, 10487–10493 (2002).

    Article  ADS  Google Scholar 

  62. E. Matito, D. Toffoli, and O. Christiansen, J. Chem. Phys., 130, 134104 (2009).

    Article  ADS  Google Scholar 

  63. S. Rampino, J. Phys. Chem. A, 120, 4683–4692 (2016).

    Article  Google Scholar 

  64. M. S. Schuurman, W. D. Allen, P. V. R. Schleyer, and H. F. Schaefer III, J. Chem. Phys., 122, 104302 (2005).

    Article  ADS  Google Scholar 

  65. F. Calvo, J. P. K. Doye, and D. J. Wales, J. Chem. Phys., 115, 9627–9636 (2001).

    Article  ADS  Google Scholar 

  66. P. Botschwina, J. Chem. Soc., Faraday Trans. 2, 84, No. 9, 1263–1276 (1988).

  67. G. A. Pitsevich, A. Malevich, E. N. Kozlovskaya, Yu. I. Doroshenko, V. Shablinskas, V. E. Pogorelov, D. Dovgal’, and V. Balevicius, Vib. Spectrosc., 79, 67–75 (2015).

    Article  Google Scholar 

  68. G. Pitsevich, A. Malevich, E. Kozlovskaya, E. Mahnach, I. Doroshenko, V. Pogorelov, L. G. M. Pettersson, V. Sablinskas, and V. Balevicius, J. Phys. Chem. A, 121, 2151–2165 (2017).

    Article  Google Scholar 

  69. S. Califano, Vibrational States, Wiley, New York (1976).

    Google Scholar 

  70. I. M. Mills, in: K. N. Rao and C. W. Mathews (Eds.), Molecular Spectroscopy: Modern Research, Academic Press, New York (1972).

  71. Mathematica, Wolfram Research Inc.; http://www.wolfram.com/mathematica/

  72. G. Pitsevich, A. Malevich, E. Kozlovskaya, E. Shalamberidze, I. Doroshenko, V. Pogorelov, E. Mahnach, V. Sapeshko, and V. Balevicius, J. Mol. Struct., 1139, 328–332 (2017).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. A. Pitsevich.

Additional information

Translated from Zhurnal Prikladnoi Spektroskopii, Vol. 84, No. 6, pp. 845–855, November–December, 2017.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kozlovskaya, E.N., Doroshenko, I.Y., Pogorelov, V.E. et al. Comparison of Degrees of Potential-Energy-Surface Anharmonicity for Complexes and Clusters with Hydrogen Bonds. J Appl Spectrosc 84, 929–938 (2018). https://doi.org/10.1007/s10812-018-0567-y

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10812-018-0567-y

Keywords

Navigation