Advertisement

Journal of Applied Spectroscopy

, Volume 83, Issue 4, pp 573–579 | Cite as

Energies of Maxima and Oscillator Strengths of CaO Elementary Transition Bands Over a Wide Energy Range

  • V. V. Sobolev
  • D. A. Merzlyakov
  • V. Val. Sobolev
Article

Integral spectra of the imaginary parts of the dielectric permittivity ε2(E) and characteristic volume (–Im ε–1) and surface [–Im (1 + ε)–1] energy losses of calcium oxide were deconvoluted into elementary components in the range 6–40 eV. The main component parameters including the energies of maxima and oscillator strengths were determined using an improved non-parametric method of united Argand diagrams and the method of the effective number of valence electrons participating in the transitions. A total of 41 components with oscillator strengths in the range 0.001–0.22 were identified instead of the 14 maxima and shoulders of the integral spectra. They were caused by transverse and longitudinal exciton and interband transitions.

Keywords

calcium oxide energy of maximum oscillator strength dielectric permittivity volume and surface energy losses exciton Argand diagram improved method 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    V. V. Sobolev and V. V. Nemoshkalenko, Computational Physics Methods in Solid-State Theory. Electronic Structure of Semiconductors [in Russian], Naukova Dumka, Kiev (1988).Google Scholar
  2. 2.
    V. V. Sobolev, Optical Properties and Electronic Structure of Nonmetals. I. Introduction to Theory [in Russian], Inst. Komp. Issled., Moscow–Izhevsk (2012).Google Scholar
  3. 3.
    C. F. Klingshrin, Semiconductor Optics, Springer, Berlin (1985).Google Scholar
  4. 4.
    A. N. Tikhonov and V. Ya. Arsenin, Methods for Solving Incorrect Problems [in Russian], Nauka, Moscow (1986).Google Scholar
  5. 5.
    V. V. Sobolev, Optical Properties and Electronic Structure of Nonmetals. II. Simulation of Integral Spectra by Elementary Bands [in Russian], Inst. Komp. Issled., Moscow–Izhevsk (2012).Google Scholar
  6. 6.
    S. Adachi, Phys. Rev. B: Condens. Matter Mater. Phys., 38, No. 18, 12966–12976 (1988).Google Scholar
  7. 7.
    I. F. Chen, C. M. Kwei, and C. J. Tung, Phys. Rev. B: Condens. Matter Mater. Phys., 48, No. 7, 4373–4379 (1993).Google Scholar
  8. 8.
    T. S. Moss, Optical Properties of Semiconductors, Butterworths Sci. Publ., London (1959).Google Scholar
  9. 9.
    V. V. Sobolev, Energy Eigen Levels of Group A 4 Solids [in Russian], Shtiintsa, Kishinev (1978).Google Scholar
  10. 10.
    V. B. Lazarev, V. V. Sobolev, and I. S. Shaplygin, Chemical and Physical Properties of Simple Metal Oxides [in Russian], Nauka, Moscow (1983).Google Scholar
  11. 11.
    Y. Kaneko and T. Koda, J. Cryst. Growth, 86, 72–78 (1988).Google Scholar
  12. 12.
    H. J. Freund, Surf. Sci., 601, No. 6, 1438–1442 (2007).ADSCrossRefGoogle Scholar
  13. 13.
    J. Osorio-Guillen, S. Lany, S. V. Barabash, and A. Zunger, Phys. Rev. Lett., 96, No. 10, 107203 (2006).ADSCrossRefGoogle Scholar
  14. 14.
    A. Reifer, F. Fuchs, C. Rodl, A. Schleife, F. Bechstedt, and R. Goldhahn, Phys. Rev. B: Condens. Matter Mater. Phys., 84, No. 7, 075218 (2011).ADSCrossRefGoogle Scholar
  15. 15.
    Y. Kaneko, K. Morimoto, and T. Koda, J. Phys. Soc. Jpn., 52, No. 12, 4385–4396 (1983).ADSCrossRefGoogle Scholar
  16. 16.
    E. V. Stepanova, V. S. Stepanyuk, M. H. Rogaleva, O. V. Farberovich, A. A. Grigorenko, and V. V. Mikhailin, Fiz. Tverd. Tela, 30, No. 8, 2303–2306 (1988).Google Scholar
  17. 17.
    V. S. Stepanyuk, A. Szasz, A. A. Grigorenko, A. A. Katsnelson, O. V. Farberovich, V. V. Michailin, and A. Hendry, Phys. Status Solidi B, 173, No. 2, 633–645 (1992).ADSCrossRefGoogle Scholar
  18. 18.
    W. Y. Ching, F. Gan, and M.-Z. Huang, Phys. Rev. B: Condens. Matter Mater. Phys., 52, No. 3, 1596–1611 (1995).Google Scholar
  19. 19.
    A. Yamasaki and T. Fujiwara, Phys. Rev. B: Condens. Matter Mater. Phys., 66, No. 24, 245108 (2002).ADSCrossRefGoogle Scholar
  20. 20.
    V. V. Sobolev and A. I. Kalugin, Fiz. Tverd. Tela, 41, No. 9, 1614–1615 (1999).Google Scholar
  21. 21.
    V. V. Sobolev, S. V. Smirnov, and V. Val. Sobolev, Fiz. Tverd. Tela, 43, No. 11, 1980–1983 (2001).Google Scholar
  22. 22.
    V. Val. Sobolev and V. V. Sobolev, Semicond. Semimetals, 79, 201–228 (2004).Google Scholar
  23. 23.
    A. I. Kalugin and V. V. Sobolev, Phys. Rev. B: Condens. Matter Mater. Phys., 71, No. 11, 115112 (2005).ADSCrossRefGoogle Scholar
  24. 24.
    D. A. Merzlyakov, V. V. Sobolev, and V. Val. Sobolev, in: Proceedings of the IXth Int. Conf. "Amorphous and Microcrystalline Semiconductors" [in Russian], Izd. Politekh. Univ., St. Petersburg (2014), pp. 372–374.Google Scholar
  25. 25.
    V. V. Sobolev, D. A. Merzlyakov, and V. Val. Sobolev, Zh. Prikl. Spektrosk., 83, No. 4, 552–558 (2016) [preceding article].Google Scholar
  26. 26.
    V. V. Sobolev, Electronic Structure of Solids near the Fundamental Absorption Edge. I. Introduction to Theory [in Russian], Naukova Dumka, Kiev (1992).Google Scholar
  27. 27.
    V. V. Sobolev and V. Val. Sobolev, Electronic Structure of Solids near the Fundamental Absorption Edge. II. Crystals of Groups II–VI [in Russian], Inst. Komp. Issled., Moscow–Izhevsk (2012).Google Scholar
  28. 28.
    J. C. Phillips, Semicond. Semimetals, 3, 278 (1967).Google Scholar
  29. 29.
    V. V. Sobolev, Excitons and Bands of Alkali Halide Crystals [in Russian], Shtiintsa, Kishinev (1984).Google Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • V. V. Sobolev
    • 1
  • D. A. Merzlyakov
    • 1
  • V. Val. Sobolev
    • 1
    • 2
  1. 1.Udmurt State UniversityIzhevskRussia
  2. 2.M. T. Kalashnikov Izhevsk State Technical UniversityIzhevskRussia

Personalised recommendations