Journal of Applied Spectroscopy

, Volume 83, Issue 4, pp 555–561 | Cite as

Raman Spectra of Crystalline Double Calcium Orthovanadates Ca10M(VO4)7 (M = Li, K, Na) and Their Interpretation Based on Deconvolution Into Voigt Profiles

  • I. A. Khodasevich
  • S. V. Voitikov
  • V. A. Orlovich
  • M. B. Kosmyna
  • A. N. Shekhovtsov

Unpolarized spontaneous Raman spectra of crystalline double calcium orthovanadates Ca10M(VO4)7 (M = Li, K, Na) in the range 150–1600 cm–1 were measured. Two vibrational bands with full-width at half-maximum (FWHM) of 37–50 cm–1 were found in the regions 150–500 and 700–1000 cm–1. The band shapes were approximated well by deconvolution into Voigt profiles. The band at 700–1000 cm–1 was stronger and deconvoluted into eight Voigt profiles. The frequencies of two strong lines were ~848 and ~862 cm–1 for Ca10Li(VO4)7; ~850 and ~866 cm–1 for Ca10Na(VO4)7; and ~844 and ~866 cm–1 for Ca10K(VO4)7. The Lorentzian width parameters of these lines in the Voigt profiles were ~5 times greater than those of the Gaussian width parameters. The FWHM of the Voigt profiles were ~18–42 cm–1. The two strongest lines had widths of 21–25 cm–1. The vibrational band at 300–500 cm–1 was ~5–6 times weaker than that at 700–1000 cm–1 and was deconvoluted into four lines with widths of 25–40 cm–1. The large FWHM of the Raman lines indicated that the crystal structures were disordered. These crystals could be of interest for Raman conversion of pico- and femtosecond laser pulses because of the intense vibrations with large FWHM in the Raman spectra.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    B. I. Lazoryak, Usp. Khim., 65, 307–325 (1996).CrossRefGoogle Scholar
  2. 2.
    B. I. Lazoryak, A. A. Belik, S. Yu. Stefanovich, V. A. Morozov, A. P. Malakhov, O. V. Baryshnikova, I. A. Leonidov, and O. N. Leonidova, Dokl. Ross. Akad. Nauk, 384, 780–784 (2002).Google Scholar
  3. 3.
    M. B. Kosmyna, B. P. Nazarenko, V. M. Puzikov, and A. N. Shekhovtsov, Acta Phys. Pol., A, 124, 305–313 (2013).Google Scholar
  4. 4.
    M. B. Kosmyna, B. P. Nazarenko, V. M. Puzikov, A. N. Shekhovtsov, A. S. Yasukevich, N. V. Kuleshov, A. E. Gulevich, M. P. Demesh, E. B. Dunina, and N. V. Guaskova, Funct. Mater., 19, 561–563 (2012).Google Scholar
  5. 5.
    P. A. Loiko, A. S. Yasukevich, A. E. Gulevich, M. P. Demesh, M. B. Kosmyna, B. P. Nazarenko, V. M. Puzikov, A. N. Shekhovtsov, A. A. Kornienko, E. B. Dunina, N. V. Kuleshov, and K. V. Yumashev, J. Lumin., 137, 252–258 (2013).CrossRefGoogle Scholar
  6. 6.
    P. G. Zverev, A. Ya. Karasik, T. T. Basiev, L. I. Ivleva, and V. V. Osiko, Quantum Electron., 33, 331–334 (2003).Google Scholar
  7. 7.
    A. Grzechnik, Chem. Mater., 10, 1034–1040 (1998).CrossRefGoogle Scholar
  8. 8.
    S. A. Kovyazina, L. A. Perelyaeva, O. N. Leonidova, I. A. Leonidov, and A. L. Ivanovskii, Crystallogr. Rep., 49, 211–214 (2004).ADSCrossRefGoogle Scholar
  9. 9.
    C.-Z. Li, W. H. Yang, and Y. C. Chang, Jpn. J. Appl. Phys., 24, Suppl. 24-2, 508–509 (1985).Google Scholar
  10. 10.
    R. Copal and C. Calvo, Z. Kristallogr., 137, 67–85 (1973).Google Scholar
  11. 11.
    M. Bradley, Thermo Fisher Scientifi c Application Note 50733, Madison, WI, USA (2007).Google Scholar
  12. 12.
    G. Gouadec and P. Colomban, Prog. Cryst. Growth Charact. Mater., 53, 1–56 (2007).CrossRefGoogle Scholar
  13. 13.
    W. Demtroder, Laser Spectroscopy. Vol. 1: Basic Principles, Springer-Verlag, Berlin, Heidelberg (2008), pp. 73–74.Google Scholar
  14. 14.
    H. O. Di Rocco and A. Cruzado, Acta Phys. Pol., A, 122, 670–673 (2012).Google Scholar
  15. 15.
    V. M. Puzikov, Yu. A. Zagoruiko, V. K. Komar′, M. B. Kosmyna, N. O. Kovalenko, A. N. Shekhovtsov, and B. P. Nazarenko, in: Crystalline Materials for Optics and Electronics [in Russian], V. M. Puzikov (Ed.), IMK, Kharkov (2012), pp. 476–543.Google Scholar
  16. 16.
    A. N. Shekhovtsov, M. B. Kosmyna, V. M. Puzikov, B. N. Nazarenko, W. Paszkowicz, A. Behrooz, P. Romanowski, A. S. Yasukevich, N. V. Kuleshov, M. P. Demesh, W. Wierzchowski, K. Wieteska, and C. Paulmann, in: Abstracts of the 17th Int. Conf. Crystal Growth and Epitaxy, ICCGE-17, August 11–16, 2013, Warsaw (2013), p. 440.Google Scholar
  17. 17.
    A. A. Kaminskii, K. Ueda, H. J. Eichler, Y. Kuwano, H. Kouta, S. N. Bagayev, H. Chyba, J. C. Barnes, T. Murai, and J. Lu, Laser Phys., 11, No. 10, 1124–1133 (2001).Google Scholar
  18. 18.
    T. T. Basiev, A. A. Sobol, P. G. Zverev, V. V. Osiko, and R. C. Powell, Appl. Opt., 38, No. 3, 594–598 (1999).ADSCrossRefGoogle Scholar
  19. 19.
    P. A. Popov, Thermal Conductivity of Solid-State Optical Materials Based on Inorganic Oxides and Fluorides [in Russian], Doctoral Dissertation in Physical-Mathematical Sciences, Bryansk State Univ. im. Akad. I. G. Petrovskogo, Bryansk (2015), pp. 108–110.Google Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • I. A. Khodasevich
    • 1
  • S. V. Voitikov
    • 1
  • V. A. Orlovich
    • 1
  • M. B. Kosmyna
    • 2
  • A. N. Shekhovtsov
    • 2
  1. 1.B. I. Stepanov Institute of PhysicsNational Academy of Sciences of BelarusMinskBelarus
  2. 2.Institute for Single CrystalsNational Academy of Sciences of UkraineKharkovUkraine

Personalised recommendations