Journal of Applied Spectroscopy

, Volume 83, Issue 3, pp 466–471 | Cite as

Photoinduced Formation of Colloidal Silver in Nitrocellulose Solutions Containing Titanium Alkoxides

  • A. I. Kulak
  • G. A. Branitsky

The study shows the possibility of photo-induced reduction of silver nitrate and formation of stable colloidal silver particles in an isopropanol-N,N-dimethylacetamide solution of titanium alkoxide (polybutyl titanate) stabilized by nitrocellulose. It is established that titanium alkoxide and the products of its partial hydrolysis in the liquid composition play the role of a photocatalyst for the reduction of silver ions; the introduction of nitric or acetic acid additives to the composition significantly increases its photosensitivity. The films deposited from the liquid composition, previously irradiated with visible or UV light, consist of hydrated titanium dioxide and nitrocellulose with incorporated colloidal silver. Thermal treatment of the films at 150–245°C leads to the decomposition of nitrocellulose and an increase in the absorption by silver particles.


titanium alkoxides titanium dioxide silver particles photocatalytic reduction nitrocellulose 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    L. Bo, W. Yang, M. Chen, J. Gao, and Q. Xue, Chem. Biodivers., 6, No. 1, 111–116 (2009).CrossRefGoogle Scholar
  2. 2.
    K. Vimala, K. S. Sivudu, Y. M. Mohan, B. Sreedhar, and K. M. Raju, Carbohydrate Polymers, 75, No. 3, 463–471 (2009).CrossRefGoogle Scholar
  3. 3.
    T. Galya, V. Sedlarık, I. Kuritka, R. Novotny, J. Sedlarikova, and P. Saha, J. Appl. Polymer Sci., 110, No. 5, 3178–3185 (2008).CrossRefGoogle Scholar
  4. 4.
    J. S. Kim, E. Kuk, K. N. Yu, J. H. Kim, S. J. Park, H. J. Lee, S. H. Kim, Y. K. Park, Y. H. Park, C. Y. Hwang, Y. K. Kim, Y. S. Lee, D. H. Jeong, and M. H. Cho, Nanomed.: Nanotechnol. Biol. Med., 3, No. 1, 95–101 (2007).Google Scholar
  5. 5.
    L. Lu, R. W. Sun, R. Chen, C. K. Hui, C. M. Ho, J. M. Luk, G. K. Lau, and C. M. Che, Antiviral Therapy, 13, No. 2, 253–262 (2008).Google Scholar
  6. 6.
    J. V. Rogers, C. V. Parkinson,Y. W. Choi, J. L. Speshock, and S. M. Hussain, Nanoscale Res. Lett., 3, No. 4, 129–133 (2008).ADSCrossRefGoogle Scholar
  7. 7.
    L. Bois, F. Chassagneux, Y. Battie, F. Bessueille, L. Mollet, S. Parola, N. Destouches, N. Toulhoat, and N. Moncoffre, Langmuir, 26, No. 2, 1199–1206 (2009).CrossRefGoogle Scholar
  8. 8.
    S. V. Karpov, A. K. Popov, and V. V. Slabko, Tech. Phys., 48, No. 6, 749–756 (2003).CrossRefGoogle Scholar
  9. 9.
    G. Brehm, G. Sauer, N. Fritz, S. Schneider, and S. Zaitsev, J. Mol. Struct., 735, 85–102 (2005).Google Scholar
  10. 10.
    K. Kneipp, H. Kneipp, I. Itzkan, R. R. Dasari, and M. S. Feld, Chem. Phys., 247, No. 1, 155–162 (1999).ADSCrossRefGoogle Scholar
  11. 11.
    P. Simakova, J. Gautier, M. Procházka, K. Hervé-Aubert, and I. Chourpa, J. Phys. Chem. C, 118, No. 14, 7690–7697 (2014).Google Scholar
  12. 12.
    C. Wen, K. Ishikawa, M. Kishima, and K. Yamada, Solar Energy Mater. Solar Cells, 61, No. 4, 339–351 (2000).CrossRefGoogle Scholar
  13. 13.
    M. Ihara, M. Kanno, and S. Inoue, Physica E, 42, No. 10, 2867–2871 (2010).ADSCrossRefGoogle Scholar
  14. 14.
    B. P. Rand, P. Peumans, and S. R. Forrest, J. Appl. Phys., 96, No. 12, 7519–7526 (2004).ADSCrossRefGoogle Scholar
  15. 15.
    W. J. Yoon, K. Y. Jung, J. Liu, T. Duraisamy, R. Revur, F. L. Teixeira, S. Sengupta, and P. R. Berger, Solar Energy Mater. Solar Cells, 94, No. 2, 128–132 (2010).CrossRefGoogle Scholar
  16. 16.
    H. H. Lee, K. S. Chou, and K. C. Huang, Nanotechnology, 16, No. 10, 2436 (2005).ADSCrossRefGoogle Scholar
  17. 17.
    J. Perelaer, C. E. Hendriks, A. W. de Laat, and U. S. Schubert, Nanotechnology, 20, No. 16, 165303 (2009).ADSCrossRefGoogle Scholar
  18. 18.
    T. V. Plisko, A. V. Bildyukevich, G. A. Branitsky, and A. I. Kulak, Izv. Nats. Akad. Nauk Belarusi, Ser. Khim. Nauk, No. 4, 26–31 (2014).Google Scholar
  19. 19.
    S. Nam, D. V. Parikh, B. D. Condon, Q. Zhao, and M. Yoshioka-Tarver, J. Nanoparticle Res., 13, No. 9, 3755–3764 (2011).CrossRefGoogle Scholar
  20. 20.
    M. Popa, T. Pradell, D. Crespo, and J. M. Calderon-Moreno, Colloids and Surfaces A: Physicochem. Eng. Aspects, 303, No. 3, 184–190 (2007).CrossRefGoogle Scholar
  21. 21.
    C. Luo, Y. Zhang, X. Zeng, Y. Zeng, and Y. Wang, J. Colloid Interface Sci., 288, No. 2, 444–448 (2005).CrossRefGoogle Scholar
  22. 22.
    H. Wang, X. Qiao, J. Chen, and S. Ding, Colloids and Surfaces A: Physicochem. Eng. Aspects, 256, No. 2, 111–115 (2005).CrossRefGoogle Scholar
  23. 23.
    Z. Zhang, B. Zhao, and L. Hu, J. Solid State Chem., 121, No. 1, 105–110 (1996).ADSCrossRefGoogle Scholar
  24. 24.
    V. E. Agabekov, I. Yu. Globa, O. A. Daiineko, N. A. Ivanova, T. G. Kosmacheva, V. A. Dlugunovich, and A. V. Tsaruk, Optical Memory and Neural Networks, 18, No. 2, 77–84 (2009).CrossRefGoogle Scholar
  25. 25.
    E. S. Kim, S. H. Kim, and C. H. Lee, Macromolecular Res., 18, No. 3, 215–221 (2010).CrossRefGoogle Scholar
  26. 26.
    X. Sun and Y. Luo, Mater. Lett., 59, No. 29, 3847–3850 (2005).CrossRefGoogle Scholar
  27. 27.
    A. Henglein, Chem. Mater., 10, No. 1, 444–450 (1998).CrossRefGoogle Scholar
  28. 28.
    J. W. Kwon, S. H. Yoon, S. S. Lee, K. W. Seo, and I. W. Shim, Bull. Korean Chem. Soc., 26, No. 5, 837–884 (2005).CrossRefGoogle Scholar
  29. 29.
    B. T. Nguyen, J. E. Gautrot, M. T. Nguyen, and X. X. Zhu, J. Mater. Chem., 17, No. 17, 1725–1730 (2007).Google Scholar
  30. 30.
    G. A. Branitsky and A. I. Kulak, Zh. Prikl. Spektrosk., 81, No. 2, 301–304 (2014) [G. A. Branitsky and A. I. Kulak, J. Appl. Spectrosc., 81, No. 2, 297–300 (2014) (English translation)].Google Scholar
  31. 31.
    P. A. Venz, R. L. Frost, and J. T. Kloprogge, J. Non-Cryst. Solids, 276, No. 1, 95–112 (2000).ADSCrossRefGoogle Scholar
  32. 32.
    S. K. Poznyak, A. I. Kokorin, and A. I. Kulak, J. Electroanal. Chem., 442, No. 1, 99–105 (1998).CrossRefGoogle Scholar
  33. 33.
    J. Tauc, R. Grigorovici, and A. Vancu, Phys. Status Solidi, 15, No. 2, 627–637 (1966).CrossRefGoogle Scholar
  34. 34.
    A. Welte, C. Waldauf, C. Brabec, and P. J. Wellmann, Thin Solid Films, 516, No. 20, 7256–7259 (2008).ADSCrossRefGoogle Scholar
  35. 35.
    C. Selwitz, Cellulose Nitrate in Conservation, Ch. 3, J. Paul Getty Trust, USA (1988), pp. 15–32.Google Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Institute of General and Inorganic ChemistryNational Academy of Sciences of BelarusMinskBelarus
  2. 2.Institute of Physico-Chemical Problems at Belarusian State UniversityMinskBelarus

Personalised recommendations