Advertisement

Journal of Applied Spectroscopy

, Volume 83, Issue 3, pp 442–448 | Cite as

Enhancement of Luminescence of Colloidal Ag2S Quantum Dots by Thionine Molecules

  • O. V. Ovchinnikov
  • I. G. Grevtseva
  • T. S. Kondratenko
  • M. S. Smirnov
  • A. V. Evtukhova
Article
  • 67 Downloads

Enhancement of IR luminescence (1205 nm) of colloidal Ag2S quantum dots (QDs) with an average size of 2.5 ± 0.3 nm was detected upon excitation in the absorption band of thionine dye molecules (530–610 nm). It is found that the observed effect occurs during a hybrid association of Ag2S QDs with monomers of the cationic thionine (Th + ) molecule. It is concluded that the photosensitization of IR luminescence of colloidal Ag2S QDs is realized due to a resonance nonradiative transfer of electronic excitation energy directly to the centers of radiative recombination from the excited Th + molecules.

Keywords

hybrid associates colloidal quantum dots thionine luminescence photosensitization 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    V. Resch-Genger, M. Grabolle, S. Cavaliere-Jaricot, R. Nitschke, and T. Nann, Nature Meth., 5, No. 9, 763–775 (2008).CrossRefGoogle Scholar
  2. 2.
    Y. Zhang, L. Mi, R. Xiong, P. N. Wang, J.-Y. Chen, W. Yang, C. Wang, and Q. Peng, Nanoscale Res. Lett., 4, No. 7, 606–612 (2009).ADSCrossRefGoogle Scholar
  3. 3.
    A. Baride, D. Engebretson, M. T. Berry, and S. May, J. Lumin., 141, 99–105 (2013).CrossRefGoogle Scholar
  4. 4.
    A. Rakovich, D. Savateeva, T. Rakovich, J. F. Donegan, Y. P. Rakovich, V. Kelly, V. Lesnyak, and A. Eychmuller, Nanoscale Res. Lett., 5, 753– 760 (2010).ADSCrossRefGoogle Scholar
  5. 5.
    M. Nyk, K. Palewska, L. Kepinski, K. A. Wilk, W. Strek, and M. Samoc, J. Lumin., 130, 2487–2490 (2010).CrossRefGoogle Scholar
  6. 6.
    Y. D. Han, Y.-B. Lee, S. Park, S. Jeon, A. J. Epstein, J.-H. Kim, J. Kim, K.-S. Lee, and J. Joo, NPG Asia Mater., 6, No. 103, 1–9 (2014).Google Scholar
  7. 7.
    X. Yi, F. Wang, W. Qin, X. Jang, and J. Yuan, Int. J. Nanomed., 9, 1347–1365 (2014).CrossRefGoogle Scholar
  8. 8.
    L. Shao, Y. Gao, and F. Yan, Sensor, 11, 11736–11751 (2011).CrossRefGoogle Scholar
  9. 9.
    M.-X. Zhao, H. Su, Z.-W. Mao, and L.-N. Ji, J. Lumin., 132, 16–21 (2012).CrossRefGoogle Scholar
  10. 10.
    O. Adegoke and T. Nyokong, J. Lumin., 146, 275–283 (2014).CrossRefGoogle Scholar
  11. 11.
    A. R. Clapp, I. L. Medintz, J. M. Mauro, B. R. Fisher, M. G. Bawendi, and H. Mattoussi, J. Am. Chem. Soc., 126, No. 1, 301–310 (2004).CrossRefGoogle Scholar
  12. 12.
    Y. Xing and J. Rao, Cancer Biomarkers, 4, 307–319 (2008).Google Scholar
  13. 13.
    N. V. Shinkarenko and V. B. Aleskovskii, Usp. Khim., 3, 406–427 (1981).Google Scholar
  14. 14.
    A. Fernandez-Fernandez, R. Manchanda, and A. J. VcGoron, Appl. Biochem. Biotechnol., 165, Nos. 7–8, 1628–1651 (2011).CrossRefGoogle Scholar
  15. 15.
    S. D. Zakharov and A. V. Ivanov, Kvantovaya Élektron., 29, No. 3, 192–197 (1999).Google Scholar
  16. 16.
    A. A. Krasnovsky, Jr., Problems of Regulation in Biological Systems, Research Institute of Regular and Chaotic Dynamics, Moscow–Izhevsk (2006), pp. 223–254.Google Scholar
  17. 17.
    J. Ge, M. Lan, B. Zhou, W. Liu, L. Guo, H. Wang, Q. Jia, G. Niu, X. Huang, H. Zhou, X. Meng, P. Wang, Ch.-S. Lee, W. Zhang, and X. Han, Nature Commun., 1–8 (2014).Google Scholar
  18. 18.
    J. Baier, T. Fuss, C. Pollmann, C. Wiesmann, K. Pindl, R. Endl, D. Baumer, M. Maier, M. Landthaller, and W. Baumler, J. Photochem. Photobiol., 87, 163–173 (2007).CrossRefGoogle Scholar
  19. 19.
    F. Amat-Guerri, J. M. Botija, and R. Sastre, Soluble J. Polymer Sci., 31, 2609–2615 (1993).Google Scholar
  20. 20.
    M. C. DeRosa and R. J. Crutchley, Coordination Chem. Rev., 233234, 351–371 (2002).CrossRefGoogle Scholar
  21. 21.
    O. V. Ovchinnikov, M. S. Smirnov, T. S. Shatskikh, V. Yu. Khokhlov, B. I. Shapiro, A. G. Vitukhnovsky, and S. A. Ambrozevich, J. Nanopart. Res., 16, 2286–2304 (2014).CrossRefGoogle Scholar
  22. 22.
    P. Jiang, C.-N. Zhu, Z.-L. Zhang, Z.-Q. Tian, and D.-W. Pang, Biomaterials, 33, 5130–5135 (2012).CrossRefGoogle Scholar
  23. 23.
    H.-Y. Yang, Y.-W. Zhao, Z.-Y. Zhang, H. M. Xiong, and S.-N. Yu, Nanotechnology, 24, 1–10 (2013).Google Scholar
  24. 24.
    M. Hardzei, M. Artemyev, M. Molinari, M. Troyon, A. Sukhanova, and I. Nabiev, Chem. Phys. Chem., 13, 330–335 (2012).Google Scholar
  25. 25.
    M. A. Shivkumar, L. S. Inamadar (Doddamani), M. H. K. Rabinal, B. G. Mulimani, G. M. A. Rao, and S. R. Inamadar, Open J. Phys. Chem., 3, 40–48 (2013).Google Scholar
  26. 26.
    E. Mutlugun, O. Samarskaya, T. Ozel, N. Cicek, N. Gaponik, A. Eychmuller, and H. V. Demir, Opt. Express, 18, No. 10, 10720–10730 (2010).ADSCrossRefGoogle Scholar
  27. 27.
    A. Rakovich, D. Savateeva, T. Rakovich, J. F. Donegan, Yu. P. Rakovich, V. Kelly, V. Lesnyak, and A. Eychmuller, Nanoscale Res. Lett., 5, 753–760 (2010).ADSCrossRefGoogle Scholar
  28. 28.
    O. V. Ovchinnikov, M. S. Smirnov, B. I. Shapiro, T. S. Shatskikh, A. N. Latyshev, Phan Thi Hai Mien, and V. Yu. Khokhlov, Opt. Spektrosk., 115, No. 3, 389–397 (2013).Google Scholar
  29. 29.
    Y. Du, B. Xu, T. Fu, M. Cai, F. Li, Y. Zhang, and Q. Wang, J. Am. Chem. Soc., 132, No. 5, 1470–1471 (2010).CrossRefGoogle Scholar
  30. 30.
    K. Akamatsu, S. Takei, M. Mizuhata, A. Kajinami, S. Deki, S. Takeoka, M. Fujii, S. Hayashi, and K. Yamamoto, Thin Solid Films, 359, 55–60 (2000).ADSCrossRefGoogle Scholar
  31. 31.
    Y. Zhang, G. Hong, Y. Zhang, G. Chen, F. Li, H. Dai, and Q. Wang, ACS Nano, 6, No. 5, 3695–3702 (2012).CrossRefGoogle Scholar
  32. 32.
    P. Jiang, Z.-Q. Tian, C.-N. Zhu, Z.-L. Zhang, and D. W. Pang, Chem. Mater., 24, 3–5 (2012).CrossRefGoogle Scholar
  33. 33.
    O. V. Ovchinnikov, M. S. Smirnov, A. S. Perepelitsa, T. S. Shatskikh, and B. I. Shapiro, Kvantovaya Élektron., 45, No. 12, 1143–1150 (2015).CrossRefGoogle Scholar
  34. 34.
    O. V. Ovchinnikov, M. S. Smirnov, B. I. Shapiro, T. S. Shatskikh, A. S. Perepelitsa, and N. V. Korolev, Fiz. Tekh. Poluprovodn., 49, No. 3, 385–391 (2015).Google Scholar
  35. 35.
    O. V. Ovchinnikov, M. S. Smirnov, B. I. Shapiro, T. S. Shatskikh, A. S. Perepelitsa, and V. Yu. Khokhlov, The Process for Producing Colloidal Semiconductor Quantum Dots of Silver Sulfide [in Russian], Pat. RF 2538262, Bul. No. 1 (2014).Google Scholar
  36. 36.
    S. Lin, Y. Feng, X. Wen, P. Zhang, S. Woo, S. Shrestha, G. Conibeer, and S. Huang, J. Phys. Chem., 119, 867–872 (2015).Google Scholar
  37. 37.
    M. Y. Han, W. Huaung, C. H. Chew, and L. M. Gan, J. Phys. Chem., 102, 1884–1887 (1998).CrossRefGoogle Scholar
  38. 38.
    A. Rodriguez-Serrano, M. C. Daza, M. Doerr, and C. M. Marian, Photochem. Photobiol. Sci., 11, 397–408 (2012).CrossRefGoogle Scholar
  39. 39.
    Z. Wang, M. Li, Yu. Zhang, Ju. Yuan, Ya. Shen, L. Niu, and A. Ivaska, ScienceDirect, 45, No. 10, 2111–2115 (2007).Google Scholar
  40. 40.
    D. A. Razdobreev, Yu. D. Lantukh, A. V. Stryapkov, S. N. Pashkevich, and E. K. Alidzhanov, Vestnik OSU, 144–146 (2004).Google Scholar
  41. 41.
    V. E. Nicotra, M. F. Mora, and R. A. Iglesias, Dyes Pigments, 76, 315–318 (2008).CrossRefGoogle Scholar
  42. 42.
    A. N. Terenin, Photonics of Dye Molecules and Related Organic Compounds, Nauka, Moscow (1967), pp. 378–381.Google Scholar
  43. 43.
    A. Tubtimtae and K.-Y. Cheng, J. Solid State Electrochem., 18, No. 6, 1627–1633 (2014).CrossRefGoogle Scholar
  44. 44.
    A. N. Latyshev, O. V. Ovchinnikov, M. S. Smirnov, D. I. Staselko, P. V. Novikov, and D. A. Minakov, Opt. Spektrosk., 108, 779–789 (2010).Google Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • O. V. Ovchinnikov
    • 1
  • I. G. Grevtseva
    • 1
  • T. S. Kondratenko
    • 1
  • M. S. Smirnov
    • 1
  • A. V. Evtukhova
    • 1
  1. 1.Voronezh State UniversityVoronezhRussia

Personalised recommendations