Journal of Applied Spectroscopy

, Volume 83, Issue 2, pp 254–260 | Cite as

Hyperspectral Surface Analysis for Ripeness Estimation and Quick UV-C Surface Treatments for Preservation of Bananas

  • W. Zhao
  • Zh. Yang
  • Zh. Chen
  • J. Liu
  • W. Ch. Wang
  • W. Yu. Zheng

This study aimed to determine the ripeness of bananas using hyperspectral surface analysis and how a rapid UV-C (ultraviolet-C light) surface treatment could reduce decay. The surface of the banana fruit and its stages of maturity were studied using a hyperspectral imaging technique in the visible and near infrared (370–1000 nm) regions. The vselected color ratios from these spectral images were used for classifying the whole banana into immature, ripe, half-ripe and overripe stages. By using a BP neural network, models based on the wavelengths were developed to predict quality attributes. The mean discrimination rate was 98.17%. The surface of the fresh bananas was treated with UV-C at dosages from 15–55 μW/cm2. The visual qualities with or without UV-C treatment were compared using the image, the chromatic aberration test, the firmness test and the area of black spot on the banana skin. The results showed that high dosages of UV-C damaged the banana skin, while low dosages were more efficient at delaying changes in the relative brightness of the skin. The maximum UV-C treatment dose for satisfactory banana preservation was between 21 and 24 μW/cm2. These results could help to improve the visual quality of bananas and to classify their ripeness more easily.


ultraviolet irradiation visual quality neural network hyperspectral ripeness 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    P. Y. Zhang, R. L. Whistler, J. N. BeMiller, and B. R. Hamaker, Carbohydr. Polym., 59, 443–458 (2005).CrossRefGoogle Scholar
  2. 2.
    S. Promyou, S. Ketsa, and W. G. van Doorn, Postharvest Biol. Technol., 48, 132–138 (2008).CrossRefGoogle Scholar
  3. 3.
    A. R. Vicente, C. Pineda, L. Lemoine, P. M. Civello, G. A. Martinez, and A. R. Chaves, Postharvest Biol. Tecnol., 35, 69–78 (2005).CrossRefGoogle Scholar
  4. 4.
    B. Nel, C. Steinberg, N. Labuschagne, and A. Viljoen, Crop Protection, 26, 697–705 (2007).CrossRefGoogle Scholar
  5. 5.
    T. T. Nguyen, S. Ketsa, and W. G. van Doorn, Postharvest Biol. Technol., 30, 187–193 (2003).CrossRefGoogle Scholar
  6. 6.
    J. Y. Chena, L. H. He, Y. M. Jiang, Y. Wang, D. C. Joyce, Z. L. Jia, and W. J. Lu, Physiol. Plantarum, 132, 318–328 (2008).CrossRefGoogle Scholar
  7. 7.
    A. Klieber, N. Bagnato, R. Barrett, and M. Sedgley, Postharvest Biol. Technol., 25, 15–24 (2002).CrossRefGoogle Scholar
  8. 8.
    M. J. R. Cuvi, A. R. Vicente, A. Concellón , and A. R. Chaves, LWT – Food Sci. Technol., 44, 1666–1671 (2011).CrossRefGoogle Scholar
  9. 9.
    L. Costa, A. R. Vicente, P. M. Civello, A. R. Chaves, and G. A. Martinez, Postharvest Biol. Technol., 39, 204–210 (2006).CrossRefGoogle Scholar
  10. 10.
    F. Artes-Hernandez, P. A. Robles, P. A. Gómez, A. T. Callejas, and F. Artes, Postharvest Biol. Technol., 55, 114–120 (2010).CrossRefGoogle Scholar
  11. 11.
    Y. Intaravanne, S. Sumriddetchkajorn, and J. Nukeaw, Sensor. Actuat. B Chem., 168, 390–394 (2012).CrossRefGoogle Scholar
  12. 12.
    A. A. Gowena, C. P. O’Donnell, P. J. Cullen, G. Downey, and J. M. Frias, Trends Food Sci. Technol., 18, 590–598 (2007).CrossRefGoogle Scholar
  13. 13.
    L. J. Janik, D. Cozzolino, R. Dambergs, W. Cynkar, and M. Gishen, Anal. Chim. Acta, 594, 107–118 (2007).CrossRefGoogle Scholar
  14. 14.
    P. Rajkumar, N. Wang, G. EImasry, G. S. V. Raghavan, and Y. Gariepy, J. Food Engin., 108, 194–200 (2012).CrossRefGoogle Scholar
  15. 15.
    D. Wu and D. W. Sun, Innovat. Food Sci. Emerg. Technol., 19, 15–28 (2013).CrossRefGoogle Scholar
  16. 16.
    G. Shama and P. Alderson, Trends Food Sci. Technol., 16, 128–136 (2005).CrossRefGoogle Scholar
  17. 17.
    C. Kamdee, S. Ketsa, and W. G. van Doorn, Postharvest Biol. Technol., 52, 288–293 (2009).CrossRefGoogle Scholar
  18. 18.
    F. Nigro, A. Ippolito, V. Lattanzio, and D. Venere, J. Plant Pathol., 82, 29–37 (2000).Google Scholar
  19. 19.
    N. Pongprasert, Y. Sekozawa, S. Sugaya, and H. Gemma, Scientia Horticulturae, 130, 73–77 (2011).CrossRefGoogle Scholar
  20. 20.
    J. M. Fonseca and J. W. Rushing, Postharvest Biol. Technol., 40, 256–261 (2006).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • W. Zhao
    • 1
  • Zh. Yang
    • 2
  • Zh. Chen
    • 2
  • J. Liu
    • 2
  • W. Ch. Wang
    • 2
  • W. Yu. Zheng
    • 2
  1. 1.College of Electronic Engineering, South China Agricultural UniversityGuangzhouChina
  2. 2.College of Engineering, South China Agricultural UniversityGuangzhouChina

Personalised recommendations