Journal of Applied Spectroscopy

, Volume 83, Issue 1, pp 149–155 | Cite as

Study of Ellagic Acid as a Natural Elastase Inhibitor by Spectroscopic Methods

  • X. Xing
  • X. Yang
  • Yu. Cao

A new natural inhibitor, ellagic acid (EA), was developed, and its inhibition efficiency on elastase was studied by spectroscopic methods. The experimental results proved that EA is a potent elastase inhibitor with an IC50 value of 1.44 mg/mL by UV-vis spectroscopy, and the inhibition mechanism of elastase was confirmed by fluorescence quenching. The interacting between EA and elastase was mainly based on the static quenching owing to the complex formation when the concentration of EA was ≤40 μM. Fluorescence quenching mainly occurred via dynamic quenching with increasing EA concentration. The thermodynamic parameters such as ΔH and ΔS were calculated to be –86.35 kJ/mol and –165.88 J/mol · K, respectively, indicating that the interactions between EA and elastase were mainly due to van der Waals forces or hydrogen bonding. The synchronous fl uorescence spectra showed that binding of EA to elastase can induce conformational changes in elastase.


spectroscopy ellagic acid elastase inhibition mechanism 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    W. Meyer, K. Neurand, and B. Radke, Arch. Dermatol. Res., 270, 391–401 (1981).CrossRefGoogle Scholar
  2. 2.
    W. F. Daamen, J. H. Veerkamp, J. C. M. Van Hest, and T. H. V. Kuppevelt, Biomaterials, 28, 4378–4398 (2007).CrossRefGoogle Scholar
  3. 3.
    K. Ju Hee and A. K. R. Bandi. J. Med. Plants Res., 3, 914–920 (2009).Google Scholar
  4. 4.
    K. Morihara, Arch. Biochem. Biophys., 120, 68–78(1967).CrossRefGoogle Scholar
  5. 5.
    J. Balo and I. Banga, Biochem. J., 46, 384–387(1950).CrossRefGoogle Scholar
  6. 6.
    Y. C. Tsai, R. Y. Juang, S. F. Lin; S. W. Chen, M. Yamasaki, and G.Tamura, Appl. Environ. Microbiol., 54, 3156–3161 (1988).Google Scholar
  7. 7.
    T. D. Tetley, Thorax, 48, 560–565 (1993).CrossRefGoogle Scholar
  8. 8.
    S. Umeki, Y. Niki, and R. Soejima, Am. J. Med. Sci., 296, 103–106 (1988).CrossRefGoogle Scholar
  9. 9.
    K. C. Meyer, J. R. Lewandoski, J. J. Zimmerman, D. Nunley, W. J. Calhoun, and G. A. Dopico, Am. Rev. Respir. Dis., 144, 580–585(1991).CrossRefGoogle Scholar
  10. 10.
    Y. H. Kim, K. S. Kim; C. S. Han, H. C. Yang, S. H. Park, K. I. Ko, S. H. Lee, K. H. Kim, N. H. Lee, J. M. Kim, and K. H. Son, Int. J. Cosmetic Sci., 29, 487–488 (2007).CrossRefGoogle Scholar
  11. 11.
    P. A. Henriksen, M. Hitt, Z. Xing, J. Wang, C. Haslett, R. A. Riemersma, D. J. Webb, Y. V. Kotelevtsev, and J. M. Sallenave, J. Immunol., 172, 4535–4544 (2004).CrossRefGoogle Scholar
  12. 12.
    G. M.Tremblay, E. Vachon, C. Larouche, and Y. Bourbonnais, Chest., 121, 582–588 (2002).CrossRefGoogle Scholar
  13. 13.
    M. Zhang, Z. Zou, N. Maass, and R. Sager, Cancer Res., 55, 2537–2541 (1995).Google Scholar
  14. 14.
    M. L. Zani, S. M. Nobar, S. A. Lacour, S. Lemoine, C. Boudier, J. G. Bieth, and T. Moreau, Eur. J. Biochem., 271, 2370–2378 (2004).CrossRefGoogle Scholar
  15. 15.
    N. Sultana and N. H. Lee. Phytother. Res., 21, 1171–1176 (2007).CrossRefGoogle Scholar
  16. 16.
    H. K. Ju and A. K. R. Bandi, J. Med. Plants Res., 3, 914–920 (2009).Google Scholar
  17. 17.
    S. C. Barros, J. A. Martins, J. C. Marcos, and P. A. Cavaco, Enzyme Microb. Technol., 50, 107–114 (2012).CrossRefGoogle Scholar
  18. 18.
    T. Hatano, Nat. Med., 49, 357–363 (1995).Google Scholar
  19. 19.
    T. Okuda, Yakugaku Zasshi, 115, 81–100 (1995).Google Scholar
  20. 20.
    Y. Y. Soong and P. J. Barlow. Food Chem., 97, 524–530 (2006).CrossRefGoogle Scholar
  21. 21.
    N. Rangkadilok, S. Sitthimonchai, L. Worasuttayangkurn, C. Mahidol, M. Ruchirawat, and J. Satayavivad, Food Chem. Toxicol., 45, 328–336 (2007).CrossRefGoogle Scholar
  22. 22.
    M. Yoshimura, Y. Watanabe, K. Kasai, J. Yamakoshi, and T. Koga. Biosci. Biotechnol. Biochem., 69, 2368–2373 (2005).CrossRefGoogle Scholar
  23. 23.
    P. Zafrilla, F. Ferreres, and F. A. Tomás-Barberán, J. Agric. Food Chem., 49, 3651–3655 (2001).CrossRefGoogle Scholar
  24. 24.
    H. Shimogaki, Y. Tanaka, H. Tamai, and M. Masuda, Int. J. Cosmetic Sci., 22, 291–304 (2000).CrossRefGoogle Scholar
  25. 25.
    D. David and C. M. Thomas, J. Gen. Microbiol., 134, 43–52 (1988).CrossRefGoogle Scholar
  26. 26.
    Y. Yumin, H. Qiuluan, F. Yanli, and S. Hongshuai, Spectrochim . Acta, A, 69, 432–436 (2008).Google Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Yancheng Institute of TechnologyYanchengChina
  2. 2.School of Chemical and Material EngineeringJiangnan UniversityWuxiChina

Personalised recommendations