Skip to main content
Log in

Investigation of Spin Hamiltonian Parameters and Defect Structure of Cu2+ In Srcl2 Crystals

  • Published:
Journal of Applied Spectroscopy Aims and scope

The spin Hamiltonian parameters (g-factors and hyperfine structure constants) and defect structure of tetragonal Cu2+ ion in SrCl2 are theoretically investigated, using the high-order perturbation formulas for 3d 9 ions in tetragonally elongated octahedra. In these formulas, the contributions to the spin Hamiltonian from the ligand orbital and spin-orbit coupling interactions are considered with respect to strong covalency. Based on the studies, the impurity Cu2+ is found to be located at a distance of about 0.42 Å from the nearest chlorine plane. The signs of the hyperfine structure constants A|| and A are suggested. The theoretical spin Hamiltonian parameters show good agreement with the experimental values. The results are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. M. V. Eremin, V. A. Ulanov, and M. M. Zaripov, Appl. Magn. Reson., 14, 435–446 (1998).

    Article  Google Scholar 

  2. S. Lijewski, S. K. Hoffmann, J. Goslar, M. Wencka, and V. A. Ulanov, J. Phys.: Condens. Matter, 20, 385208-1–7 (2008).

  3. S. K. Hoffmann, J. Goslar, S. Lijewski, and V. A. Ulanov, J. Chem. Phys., 127, 124705-1–124705-13 (2007).

  4. V. A. Ulanov, E. R. Zhiteitcev, and A. G. Varlamov, J. Mol. Struct., 838, 182–186 (2007).

    Article  ADS  Google Scholar 

  5. V. A. Ulanov, M. Krupsk, S. K. Hoffmann, and M. M. Zaripov, J. Phys.: Condens. Matter, 15, 1081–1096 (2003).

    ADS  Google Scholar 

  6. H. Bill, Phys. Lett., 44(2), 101–102 (1973).

    Article  Google Scholar 

  7. P. B. Oliete, V. M. Orera, and P. J. Alonso, Appl. Magn. Reson., 15, 155–168 (1998).

    Article  Google Scholar 

  8. E. R. Zhiteitsev, V. A. Ulanov, and M. M. Zaripov, Phys. Solid State, 49, No. 5, 845–850 (2007).

    Article  ADS  Google Scholar 

  9. J. C. Gonzales, H. W. Hartog, and R. Alcala, Phys. Rev. B, 21, 3826–3832 (1980).

    Article  ADS  Google Scholar 

  10. P. J. Alonso, J. Casas-Gonzales, H. W. Hartog, and R. Alcala, Phys. Rev. B, 27, 2722–2729 (1983).

    Article  ADS  Google Scholar 

  11. E. R. Zhiteitsev, V. A. Ulanov, and M. M. Zaripov, Phys. Solid State, 47, No. 7, 1254–1257 (2005).

    Article  ADS  Google Scholar 

  12. S. Sugano, Y. Tanabe, and H. Kamimura, Multiplets of Transition-Metal Ions in Crystals, Academic Press, New York, 249–279 (1970).

    Google Scholar 

  13. 13. X. Y. Gao, S. Y. Wu, W. H. Wei, and W. Z. Yan, Z. Naturforsch., 60a, 145–148 (2005).

    ADS  Google Scholar 

  14. S. Y. Wu, Y. X. Hu, X. F. Wang, and C. J. Fu, Radiat. Effects Defects Solids, 165, No. 4, 298–304 (2010).

    Article  ADS  Google Scholar 

  15. H. M. Zhang, S. Y. Wu, M. Q. Kuang, and Z. H. Zhang, J. Phys. Chem. Solids,73, 846–850 (2012).

    Article  ADS  Google Scholar 

  16. Y. K. Cheng, S. Y. Wu, C. C. Ding, and M. Q. Kuang, Zh. Prikl. Spektrosk., 81, No. 6, 1064–1067 (2014) [Y. K. Cheng, S. Y. Wu, C. C. Ding, and M. Q. Kuang, J. Appl. Spectrosc., 81, 1064–1067 (2015)].

  17. A. Abragam and B. Bleanely, Electron Paramagnetic Resonance of Transition Ions, London, Oxford University Press, 381–385 (1970).

    Google Scholar 

  18. 18. W. C. Zheng and S.Y. Wu, Z. Naturforsch., 55a, 915–920 (2000).

    ADS  Google Scholar 

  19. S.Y. Wu, X.Y. Gao, and H. N. Dong, J. Magn. Magn. Mater., 301, 67–72 (2006).

    Article  ADS  Google Scholar 

  20. H. M. Zhang, S. Y. Wu, L. Li, and P. Xu, J. Mol. Struct. THEOCHEM, 942, No. 1–3, 104–109 (2010).

    Article  Google Scholar 

  21. B. R. McGarvey, J. Phys. Chem., 71, 51–66 (1967).

    Article  Google Scholar 

  22. R. C. Weast, CRC Handbook of Chemistry and Physics, CRC Press, Boca Raton (1989).

    Google Scholar 

  23. D. J. Newman and B. Ng, Rep. Prog. Phys., 52, 699–763 (1989).

    Article  ADS  Google Scholar 

  24. W. L. Yu, X. M. Zhang, L. X. Yang, and B.Q. Zen, Phys Rev. B, 50, 6756–6764 (1994).

    Article  ADS  Google Scholar 

  25. Y. Mei, W. C. Zheng, and H. Lv, Int. J. Mod. Phys. B, 24, No. 18, 3619–3625 (2010).

    Article  ADS  Google Scholar 

  26. E. Clementi and D. L. Raimondi, J. Chem. Phys., 38, No. 11, 2686–2689 (1963).

    Article  ADS  Google Scholar 

  27. E. Clementi, D. L. Raimondi, and W. P. Reinhardt, J. Chem. Phys., 47, No. 4, 1300–1307 (1967).

    Article  ADS  Google Scholar 

  28. K. H. Karlsson and T. Perander, Chem. Scr., 3, 201–208 (1973).

    Google Scholar 

  29. H. M. Zhang and X. Wan, J. Non-Cryst. Solids, 361, 43–46 (2013).

    Article  ADS  Google Scholar 

  30. J. A. Aramburu, M. Moreno, and M. T. Barriuso, J. Phys.: Condens. Matter, 4, 9089–9112 (1992).

    ADS  Google Scholar 

  31. J. A. Aramburu, P. Fernandez, M. T. Garcia, Barriuso, and M. Moreno, Phys. Rev. B, 67, 020101-1–020101-4 (2002).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Z. Lin.

Additional information

Published in Zhurnal Prikladnoi Spektroskopii, Vol. 83, No. 1, pp. 42–47, January–February, 2016.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lin, J.Z. Investigation of Spin Hamiltonian Parameters and Defect Structure of Cu2+ In Srcl2 Crystals. J Appl Spectrosc 83, 35–39 (2016). https://doi.org/10.1007/s10812-016-0238-9

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10812-016-0238-9

Keywords

Navigation