Journal of Applied Spectroscopy

, Volume 83, Issue 1, pp 35–39 | Cite as

Investigation of Spin Hamiltonian Parameters and Defect Structure of Cu2+ In Srcl2 Crystals

  • J. Z. Lin

The spin Hamiltonian parameters (g-factors and hyperfine structure constants) and defect structure of tetragonal Cu2+ ion in SrCl2 are theoretically investigated, using the high-order perturbation formulas for 3d 9 ions in tetragonally elongated octahedra. In these formulas, the contributions to the spin Hamiltonian from the ligand orbital and spin-orbit coupling interactions are considered with respect to strong covalency. Based on the studies, the impurity Cu2+ is found to be located at a distance of about 0.42 Å from the nearest chlorine plane. The signs of the hyperfine structure constants A|| and A are suggested. The theoretical spin Hamiltonian parameters show good agreement with the experimental values. The results are discussed.


electron paramagnetic resonance crystal-fields and spin Hamiltonians Cu2+ SrCl2 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    M. V. Eremin, V. A. Ulanov, and M. M. Zaripov, Appl. Magn. Reson., 14, 435–446 (1998).CrossRefGoogle Scholar
  2. 2.
    S. Lijewski, S. K. Hoffmann, J. Goslar, M. Wencka, and V. A. Ulanov, J. Phys.: Condens. Matter, 20, 385208-1–7 (2008).Google Scholar
  3. 3.
    S. K. Hoffmann, J. Goslar, S. Lijewski, and V. A. Ulanov, J. Chem. Phys., 127, 124705-1–124705-13 (2007).Google Scholar
  4. 4.
    V. A. Ulanov, E. R. Zhiteitcev, and A. G. Varlamov, J. Mol. Struct., 838, 182–186 (2007).ADSCrossRefGoogle Scholar
  5. 5.
    V. A. Ulanov, M. Krupsk, S. K. Hoffmann, and M. M. Zaripov, J. Phys.: Condens. Matter, 15, 1081–1096 (2003).ADSGoogle Scholar
  6. 6.
    H. Bill, Phys. Lett., 44(2), 101–102 (1973).CrossRefGoogle Scholar
  7. 7.
    P. B. Oliete, V. M. Orera, and P. J. Alonso, Appl. Magn. Reson., 15, 155–168 (1998).CrossRefGoogle Scholar
  8. 8.
    E. R. Zhiteitsev, V. A. Ulanov, and M. M. Zaripov, Phys. Solid State, 49, No. 5, 845–850 (2007).ADSCrossRefGoogle Scholar
  9. 9.
    J. C. Gonzales, H. W. Hartog, and R. Alcala, Phys. Rev. B, 21, 3826–3832 (1980).ADSCrossRefGoogle Scholar
  10. 10.
    P. J. Alonso, J. Casas-Gonzales, H. W. Hartog, and R. Alcala, Phys. Rev. B, 27, 2722–2729 (1983).ADSCrossRefGoogle Scholar
  11. 11.
    E. R. Zhiteitsev, V. A. Ulanov, and M. M. Zaripov, Phys. Solid State, 47, No. 7, 1254–1257 (2005).ADSCrossRefGoogle Scholar
  12. 12.
    S. Sugano, Y. Tanabe, and H. Kamimura, Multiplets of Transition-Metal Ions in Crystals, Academic Press, New York, 249–279 (1970).Google Scholar
  13. 13.
    13. X. Y. Gao, S. Y. Wu, W. H. Wei, and W. Z. Yan, Z. Naturforsch., 60a, 145–148 (2005).ADSGoogle Scholar
  14. 14.
    S. Y. Wu, Y. X. Hu, X. F. Wang, and C. J. Fu, Radiat. Effects Defects Solids, 165, No. 4, 298–304 (2010).ADSCrossRefGoogle Scholar
  15. 15.
    H. M. Zhang, S. Y. Wu, M. Q. Kuang, and Z. H. Zhang, J. Phys. Chem. Solids,73, 846–850 (2012).ADSCrossRefGoogle Scholar
  16. 16.
    Y. K. Cheng, S. Y. Wu, C. C. Ding, and M. Q. Kuang, Zh. Prikl. Spektrosk., 81, No. 6, 1064–1067 (2014) [Y. K. Cheng, S. Y. Wu, C. C. Ding, and M. Q. Kuang, J. Appl. Spectrosc., 81, 1064–1067 (2015)].Google Scholar
  17. 17.
    A. Abragam and B. Bleanely, Electron Paramagnetic Resonance of Transition Ions, London, Oxford University Press, 381–385 (1970).Google Scholar
  18. 18.
    18. W. C. Zheng and S.Y. Wu, Z. Naturforsch., 55a, 915–920 (2000).ADSGoogle Scholar
  19. 19.
    S.Y. Wu, X.Y. Gao, and H. N. Dong, J. Magn. Magn. Mater., 301, 67–72 (2006).ADSCrossRefGoogle Scholar
  20. 20.
    H. M. Zhang, S. Y. Wu, L. Li, and P. Xu, J. Mol. Struct. THEOCHEM, 942, No. 1–3, 104–109 (2010).CrossRefGoogle Scholar
  21. 21.
    B. R. McGarvey, J. Phys. Chem., 71, 51–66 (1967).CrossRefGoogle Scholar
  22. 22.
    R. C. Weast, CRC Handbook of Chemistry and Physics, CRC Press, Boca Raton (1989).Google Scholar
  23. 23.
    D. J. Newman and B. Ng, Rep. Prog. Phys., 52, 699–763 (1989).ADSCrossRefGoogle Scholar
  24. 24.
    W. L. Yu, X. M. Zhang, L. X. Yang, and B.Q. Zen, Phys Rev. B, 50, 6756–6764 (1994).ADSCrossRefGoogle Scholar
  25. 25.
    Y. Mei, W. C. Zheng, and H. Lv, Int. J. Mod. Phys. B, 24, No. 18, 3619–3625 (2010).ADSCrossRefGoogle Scholar
  26. 26.
    E. Clementi and D. L. Raimondi, J. Chem. Phys., 38, No. 11, 2686–2689 (1963).ADSCrossRefGoogle Scholar
  27. 27.
    E. Clementi, D. L. Raimondi, and W. P. Reinhardt, J. Chem. Phys., 47, No. 4, 1300–1307 (1967).ADSCrossRefGoogle Scholar
  28. 28.
    K. H. Karlsson and T. Perander, Chem. Scr., 3, 201–208 (1973).Google Scholar
  29. 29.
    H. M. Zhang and X. Wan, J. Non-Cryst. Solids, 361, 43–46 (2013).ADSCrossRefGoogle Scholar
  30. 30.
    J. A. Aramburu, M. Moreno, and M. T. Barriuso, J. Phys.: Condens. Matter, 4, 9089–9112 (1992).ADSGoogle Scholar
  31. 31.
    J. A. Aramburu, P. Fernandez, M. T. Garcia, Barriuso, and M. Moreno, Phys. Rev. B, 67, 020101-1–020101-4 (2002).Google Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Suzhou Institute of TechnologyJiangsu University of Science and TechnologyZhangjiagangChina

Personalised recommendations