Journal of Applied Spectroscopy

, Volume 82, Issue 5, pp 882–887 | Cite as

Determination of Trace Nickel in Natural Water by Flow Injection Analysis with Cetrimonium Bromide as Sensitizer


2-(5-Bromo-2-pyridylazo)-5-diethylaminophenol (5-Br-PADAP) is a highly sensitive chromogenic reagent that can react with most of the transition and alkaline earth metals. The Ni(II)-5-Br-PADAP complex is more stable than other metal–5-Br-PADAP complexes. In the presence of seignette salt, ethylenediaminetetraacetic acid (EDTA) can decompose most of the 5-Br-PADAP complexes with metals except for iron, cobalt, and nickel. Cetrimonium bromide (CTMAB) as a sensitizer for the color reaction forms a ternary complex with nickel and 5-Br-PADAP with maximum absorption wavelength at 561 nm. CTMAB can significantly improve the sensitivity and selectivity of nickel determination, as well as the stability and solubility of compounds. In this study, the determination of trace nickel in natural water samples was performed by flow injection analysis. The calibration lines were established in the range of 0–200 μg/l of nickel (n ≥ 3), and the limit of detection was 0.093 μg/l. The relative standard deviation was 2.55% for the determination of 25 μg/l nickel (n ≥ 20). The recoveries of this method ranged from 91.0 to 101% for environmental water samples. A large amount of aluminum, calcium, cadmium, copper, bicarbonate, magnesium, zinc, and iron, except for cobalt, did not interfere with the determination of nickel.


nickel 2-(5-bromo-2-pyridylazo)-5-diethylaminophenol ethylenediaminetetraacetic acid flow injection analysis 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    H. Savolainen, Rev. Environ. Health, 11, 167–173 (1996).CrossRefGoogle Scholar
  2. 2.
    World Health Organization Guidelines for Drinking-Water Quality, 4th ed., Gutenberg, WHO Press (2011).Google Scholar
  3. 3.
    F. S. Wei, P. H. Qu, N. K. Shen, and F. Yin, Talanta, 28, 189–191 (1981).CrossRefGoogle Scholar
  4. 4.
    X. K. Ping, Rock Miner. Anal., 2, 101–106 (1988).Google Scholar
  5. 5.
    S. L. C. Ferreira, A. C. S. Costa, and D. S. de Jesus, Talanta, 43, 1649–1656 (1996).CrossRefGoogle Scholar
  6. 6.
    K. Sözgen and E. Tütem, Talanta, 62, 971–976 (2004).CrossRefGoogle Scholar
  7. 7.
    S. J. Chen, X. S. Zhang, L. Y. Yu, L. Wang, and H. Li, Spectrochim. Acta, A, 88, 49–55 (2012).CrossRefADSGoogle Scholar
  8. 8.
    Water and Wastewater Monitoring and Analysis Method, 4th ed., China Environmental Science Press, Beijing (2003).Google Scholar
  9. 9.
    Environmental Chemistry, Higher Education Press, Beijing (2003).Google Scholar
  10. 10.
    Complexation in Analytical Chemistry, Interscience Co., New York (2006).Google Scholar
  11. 11.
    The Analytical Uses of Ethylenediamine Tetraacetic Acid, Van Nostrand Co., New York (1965).Google Scholar
  12. 12.
    J. Z. Zhang, X. H. Fan, and L. H. Xue, Metall. Anal., 8, 74–78 (2011).Google Scholar
  13. 13.
    Environmental Chemical and Biological Effects of Trace Elements, China Environmental Science Press, Beijing (1992).Google Scholar
  14. 14.
    Z. Q. Zhou, Z. W. Yu, H. Y. Chen, and L. R. Chen, Chem. Res., 4, 9–12 (1997).Google Scholar
  15. 15.
    P. E. Mermet and J. M. Deruaz, J. Anal. At. Spectrom., 2, 61–65 (1994).Google Scholar
  16. 16.
    G. T. He, Y. P. Du, L. H. Ping, and L. Q. Ying, Chin. J. Spectrosc. Lab., 26, 1120–1125 (2009).Google Scholar
  17. 17.
    GB11910-89, National Standard of P. R. China (1989).Google Scholar
  18. 18.
    W. B. Jin and Q. Lu, Metall. Anal., 6, 76–77 (2007).Google Scholar
  19. 19.
    H. W. Ji, H. X. Cao, H. Z. Xin, and S. Li, J. Ocean Univ. China, 1, 25–30 (2010).CrossRefGoogle Scholar
  20. 20.
    X. Li, Metall. Anal., 3, 71–74 (2007).Google Scholar
  21. 21.
    GB11912-89, National Standard of P. R. China (1989).Google Scholar
  22. 22.
    A. R. Khorrami and A. R. Fakhari, Talanta, 64, 13–17 (2004).CrossRefGoogle Scholar
  23. 23.
    H. Y. Luo, W. H. Ruan, Y. G. Chen, Y. X. Mo, L. P. Zhu, Y. L. Wu, and J. L. Li, Mod. Food Sci. Technol., 12, 1527–1529 (2011).Google Scholar
  24. 24.
    Z. Q. Yang and A. X. Yu, Anal. Test Technol. Instrum., 2, 98–100 (2003).MathSciNetGoogle Scholar
  25. 25.
    S. L. C. Ferreira, C. F. Brito, A. F. Dantas, N. M. Araújo, and A. C. S. Costa, Talanta, 48, 1173–1177 (1999).CrossRefGoogle Scholar
  26. 26.
    K. Chisato, U. Kan, H. Satsuki, D. Tomotaro, and K. Koichi, Bull Osaka Med. Coll., 1, 1–7 (2005).Google Scholar
  27. 27.
    M. Morfobos and A. Economou, Anal. Chim. Acta, 519, 57–64 (2004).CrossRefGoogle Scholar
  28. 28.
    C. Kokkinos and A. Economou, Anal. Chim. Acta, 622, 111–118 (2008).CrossRefGoogle Scholar
  29. 29.
    H. Wu, Z. P. Wang, and G. S. Chen, Metall. Anal., 6, 15–17 (1999).Google Scholar
  30. 30.
    Y. Ma, G. L. Fan, and C. R. Gong, Mod . Sci. Instrum., 5, 116–118 (2007).Google Scholar
  31. 31.
    Catalytic Kinetic Analysis and Its Application, Jiangxi College Publ. House, Nanchang (1991).Google Scholar
  32. 32.
    O. D. Renedo, M. A. A. Lomillo, and M. J. A. Martinez, Anal. Chim. Acta, 521, 215–221 (2004).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Z. X. Zhao
    • 1
  • C. X. Zhang
    • 1
  • N. Li
    • 1
  • X. S. Zhang
    • 1
  1. 1.Sichuan UniversityChengduChina

Personalised recommendations