Skip to main content
Log in

Determination of Trace Nickel in Natural Water by Flow Injection Analysis with Cetrimonium Bromide as Sensitizer

  • Published:
Journal of Applied Spectroscopy Aims and scope

2-(5-Bromo-2-pyridylazo)-5-diethylaminophenol (5-Br-PADAP) is a highly sensitive chromogenic reagent that can react with most of the transition and alkaline earth metals. The Ni(II)-5-Br-PADAP complex is more stable than other metal–5-Br-PADAP complexes. In the presence of seignette salt, ethylenediaminetetraacetic acid (EDTA) can decompose most of the 5-Br-PADAP complexes with metals except for iron, cobalt, and nickel. Cetrimonium bromide (CTMAB) as a sensitizer for the color reaction forms a ternary complex with nickel and 5-Br-PADAP with maximum absorption wavelength at 561 nm. CTMAB can significantly improve the sensitivity and selectivity of nickel determination, as well as the stability and solubility of compounds. In this study, the determination of trace nickel in natural water samples was performed by flow injection analysis. The calibration lines were established in the range of 0–200 μg/l of nickel (n ≥ 3), and the limit of detection was 0.093 μg/l. The relative standard deviation was 2.55% for the determination of 25 μg/l nickel (n ≥ 20). The recoveries of this method ranged from 91.0 to 101% for environmental water samples. A large amount of aluminum, calcium, cadmium, copper, bicarbonate, magnesium, zinc, and iron, except for cobalt, did not interfere with the determination of nickel.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Savolainen, Rev. Environ. Health, 11, 167–173 (1996).

    Article  Google Scholar 

  2. World Health Organization Guidelines for Drinking-Water Quality, 4th ed., Gutenberg, WHO Press (2011).

  3. F. S. Wei, P. H. Qu, N. K. Shen, and F. Yin, Talanta, 28, 189–191 (1981).

    Article  Google Scholar 

  4. X. K. Ping, Rock Miner. Anal., 2, 101–106 (1988).

    Google Scholar 

  5. S. L. C. Ferreira, A. C. S. Costa, and D. S. de Jesus, Talanta, 43, 1649–1656 (1996).

    Article  Google Scholar 

  6. K. Sözgen and E. Tütem, Talanta, 62, 971–976 (2004).

    Article  Google Scholar 

  7. S. J. Chen, X. S. Zhang, L. Y. Yu, L. Wang, and H. Li, Spectrochim. Acta, A, 88, 49–55 (2012).

    Article  ADS  Google Scholar 

  8. Water and Wastewater Monitoring and Analysis Method, 4th ed., China Environmental Science Press, Beijing (2003).

  9. Environmental Chemistry, Higher Education Press, Beijing (2003).

  10. Complexation in Analytical Chemistry, Interscience Co., New York (2006).

  11. The Analytical Uses of Ethylenediamine Tetraacetic Acid, Van Nostrand Co., New York (1965).

  12. J. Z. Zhang, X. H. Fan, and L. H. Xue, Metall. Anal., 8, 74–78 (2011).

    Google Scholar 

  13. Environmental Chemical and Biological Effects of Trace Elements, China Environmental Science Press, Beijing (1992).

  14. Z. Q. Zhou, Z. W. Yu, H. Y. Chen, and L. R. Chen, Chem. Res., 4, 9–12 (1997).

    Google Scholar 

  15. P. E. Mermet and J. M. Deruaz, J. Anal. At. Spectrom., 2, 61–65 (1994).

    Google Scholar 

  16. G. T. He, Y. P. Du, L. H. Ping, and L. Q. Ying, Chin. J. Spectrosc. Lab., 26, 1120–1125 (2009).

    Google Scholar 

  17. GB11910-89, National Standard of P. R. China (1989).

  18. W. B. Jin and Q. Lu, Metall. Anal., 6, 76–77 (2007).

    Google Scholar 

  19. H. W. Ji, H. X. Cao, H. Z. Xin, and S. Li, J. Ocean Univ. China, 1, 25–30 (2010).

    Article  Google Scholar 

  20. X. Li, Metall. Anal., 3, 71–74 (2007).

    Google Scholar 

  21. GB11912-89, National Standard of P. R. China (1989).

  22. A. R. Khorrami and A. R. Fakhari, Talanta, 64, 13–17 (2004).

    Article  Google Scholar 

  23. H. Y. Luo, W. H. Ruan, Y. G. Chen, Y. X. Mo, L. P. Zhu, Y. L. Wu, and J. L. Li, Mod. Food Sci. Technol., 12, 1527–1529 (2011).

    Google Scholar 

  24. Z. Q. Yang and A. X. Yu, Anal. Test Technol. Instrum., 2, 98–100 (2003).

    MathSciNet  Google Scholar 

  25. S. L. C. Ferreira, C. F. Brito, A. F. Dantas, N. M. Araújo, and A. C. S. Costa, Talanta, 48, 1173–1177 (1999).

    Article  Google Scholar 

  26. K. Chisato, U. Kan, H. Satsuki, D. Tomotaro, and K. Koichi, Bull Osaka Med. Coll., 1, 1–7 (2005).

    Google Scholar 

  27. M. Morfobos and A. Economou, Anal. Chim. Acta, 519, 57–64 (2004).

    Article  Google Scholar 

  28. C. Kokkinos and A. Economou, Anal. Chim. Acta, 622, 111–118 (2008).

    Article  Google Scholar 

  29. H. Wu, Z. P. Wang, and G. S. Chen, Metall. Anal., 6, 15–17 (1999).

    Google Scholar 

  30. Y. Ma, G. L. Fan, and C. R. Gong, Mod . Sci. Instrum., 5, 116–118 (2007).

    Google Scholar 

  31. Catalytic Kinetic Analysis and Its Application, Jiangxi College Publ. House, Nanchang (1991).

  32. O. D. Renedo, M. A. A. Lomillo, and M. J. A. Martinez, Anal. Chim. Acta, 521, 215–221 (2004).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to X. S. Zhang.

Additional information

Abstract of article is published in Zhurnal Prikladnoi Spektroskopii, Vol. 82, No. 5, p. 807, September–October, 2015.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, Z.X., Zhang, C.X., Li, N. et al. Determination of Trace Nickel in Natural Water by Flow Injection Analysis with Cetrimonium Bromide as Sensitizer. J Appl Spectrosc 82, 882–887 (2015). https://doi.org/10.1007/s10812-015-0198-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10812-015-0198-5

Keywords

Navigation