Advertisement

Journal of Applied Spectroscopy

, Volume 82, Issue 5, pp 857–860 | Cite as

Photocurrent in Strontium Titanate Films on Silicon Substrates

  • H. Sohrabi Anaraki
  • N. V. Gaponenko
  • V. A. Ivanov
Article
  • 46 Downloads

Using the sol-gel method, strontium titanate films were prepared (strontium titanate xerogels) on monocrystalline silicon substrates at 750°C annealing temperature. Nickel upper electrodes were deposited by magnetron sputtering, and the current–voltage characteristics were measured for the prepared structures with two upper electrodes and a Schottky barrier. Significant changes in the current–voltage characteristics were observed after illuminating the diode structure with a halogen lamp characterized by 57 mW/cm2 intensity and 3123°C color temperature of the tungsten filament. For a 65-nm thick strontium titanate film under reverse bias voltage of –3 V the photocurrent is 80 μA, whereas without illumination the reverse current is close to zero. Under direct illumination and a voltage of 3 V the photocurrent is 190 μA, while without illumination the current does not exceed 22.5 μA.

Keywords

sol-gel method strontium titanate photocurrent 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    L. Mechin, G. J. Gerritsma, and J. Garcia Lopez, Physica C, 324, 47–56 (1999).CrossRefADSGoogle Scholar
  2. 2.
    S. Baba, K. Numata, and S. Miyake, Sci. Technol. Adv. Mater., 1, 211–217 (2000).CrossRefGoogle Scholar
  3. 3.
    C. Bruce, R. R. Castell, and M. R. Castell, J. Phys. Chem. C, 112, 6538–6545 (2008).CrossRefGoogle Scholar
  4. 4.
    K. Fukushima and S. Shibagaki, Thin Solid Films, 315, 238–243 (1998).CrossRefADSGoogle Scholar
  5. 5.
    A. M. Kaiser, A. X. Gray, G. Conti, B. Jalan, A. P. Kajdos, A. Gloskovskii, S. Ueda, Y. Yamashita, K. Kobayashi, W. Drube, S. Stemmer, and C. S. Fadley, Appl. Phys. Lett., 100, 261603(1–4) (2012).Google Scholar
  6. 6.
    C. Wontae, S. W. Kirchoefer, J. M. Pond, J. A. Bellotti, and S. B. Qadri, J. Appl. Phys., 96, No. 11, 6629–6633 (2004).CrossRefADSGoogle Scholar
  7. 7.
    T. M. Im, J. Y. Park, H. J. Kim, H. K. Choi, K. W. Jung, and D. Jung, Bull. Korean Chem. Soc., 29, 427–430 (2008).CrossRefGoogle Scholar
  8. 8.
    K. Katsumata, T. Shichi, and A. Fujishima, Ceram. Soc. Jpn., 118, 43–47 (2010).CrossRefGoogle Scholar
  9. 9.
    S. Fuentes, R. A. Zarate, E. Chavez, P. Munoz, D. Diaz-Droguett, and P. Leyton, J. Mater. Sci., 45, 1448–1452 (2010).CrossRefADSGoogle Scholar
  10. 10.
    W. Hofman, S. Hoffmann, and R. Waster, Thin Solid Films, 305, 66–73 (1997).CrossRefADSGoogle Scholar
  11. 11.
    F. M. Pontes, E. R. Leite, E. J. H. Lee, E. Longo, and J. A. Varela, J. Europ. Ceram. Soc., 21, 419–426 (2001).CrossRefGoogle Scholar
  12. 12.
    S. Hirose, A. Nakayama, H. Niimi, K. Kageyama, and H. Takagi, J. Appl. Phys., 104, 053712(1–12) (2008).Google Scholar
  13. 13.
    M. H. Tang, Z. P. Wang, J. C. Li, Z. Q. Zeng, X. L. Xu, G. Y. Wang, L. B. Zhang, Y. G. Xiao, S. B. Yang, B. Jiang, and J. He, Semicond. Sci. Technol., 26, 075019 (2011).CrossRefADSGoogle Scholar
  14. 14.
    D. Fernandez-Hevia, J. de Frutos, A. C. Caballero, and J. F. Fernandez, J. Appl. Phys., 92, 2890–2898 (2002).CrossRefADSGoogle Scholar
  15. 15.
    M. C. Tarun, F. A. Selim, and M. D. McCluskey, Phys. Rev. Lett., 111, 187403 (2013).CrossRefADSGoogle Scholar
  16. 16.
    L. Wang, K. Jin, J. Xing, C. Ge, H. Lu, W. Zhou, and G. Yang, Appl. Opt., 52, 3473–3476 (2013).CrossRefADSGoogle Scholar
  17. 17.
    H. Sohrabi Anaraki, N. V. Gaponenko, M. V. Rudenko, A. F. Guk, S. M Zavadskij, D. A. Golosov, B. S. Kolosnitsyn, V. V. Kolos, A. N. Pyatlitskij, and A. S. Turtsevich, Semiconductors, 48, No. 12, 1685–1687 (2014).CrossRefADSGoogle Scholar
  18. 18.
    D. Kan, T. Terashima, R. Kanda, A. Masuno, K. Tanaka, S. Chu, H. Kan, A. Ishizumi, Y. Kanemitsu, Y. Shimakawa, and M. Takano, Nature Mater., 4, 816–819 (2005).CrossRefADSGoogle Scholar
  19. 19.
    D. Choi, D. Lee, H. Sim, M. Chang, and H. Hwang, Appl. Phys. Lett., 88, 082904(1–3) (2006).Google Scholar
  20. 20.
    M. C. Ni, S. M. Guo, H. F. Tian, Y. G. Zhao, and J. Q. Li, Appl. Phys. Lett., 91, 183502(1–3) (2007).Google Scholar
  21. 21.
    T. Fujii, M. Kawasaki, A. Sawa, H. Akoh, Y. Kawazoe, and Y. Tokura, Appl. Phys. Lett., 86, 012107(1–3) (2005).Google Scholar
  22. 22.
    T. Fujii, M. Kawasaki, A. Sawa, Y. Kawazoe, H. Akoh, and Y. Tokura, Phys. Rev. B, 75, 165101(1–7) (2007).Google Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • H. Sohrabi Anaraki
    • 1
  • N. V. Gaponenko
    • 1
  • V. A. Ivanov
    • 2
  1. 1.Belarusian State University of Informatics and RadioelectronicsMinskBelarus
  2. 2.Scientific and Practical Materials Research CenterNational Academy of Sciences of BelarusMinskBelarus

Personalised recommendations