Advertisement

Journal of Applied Spectroscopy

, Volume 82, Issue 5, pp 845–848 | Cite as

Intrinsic Fluorescence as a Spectral Probe for Protein Denaturation Studies in the Presence of Honey

  • Y. H. Wong
  • H. A. Kadir
  • S. Tayyab
Article
  • 55 Downloads

Honey was found to quench the intrinsic fluorescence of bovine serum albumin (BSA) in a concentration dependent manner, showing complete quenching in the presence of 5% (w/v) honey. Increasing the protein concentration up to 5.0 μM did not lead to the recovery of the protein fluorescence. Urea denaturation of BSA, which otherwise shows a two-step, three-state transition, using intrinsic fluorescence of the protein as the probe failed to produce any result in the presence of 5% (w/v) honey. Thus, intrinsic fluorescence cannot be used as a spectral probe for protein denaturation studies in the presence of honey.

Keywords

bovine serum albumin fluorescence spectroscopy fluorimetric interference honey protein denaturation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    C. O. Fagain, Enzyme Microb. Technol., 33, 137−149 (2003).CrossRefGoogle Scholar
  2. 2.
    T. Arakawa, D. Ejima, Y. Kita, and K. Tsumoto, Biochim. Biophys. Acta, 1764, 1677−1687 (2006).CrossRefGoogle Scholar
  3. 3.
    L. R. Singh, N. K. Poddar, T. A. Dar, S. Rahman, R. Kumar, and F. Ahmad, J. Iran. Chem. Soc., 8, 1−23 (2011).Google Scholar
  4. 4.
    S. Bogdanov, T. Jurendic, S. Sieber, and P. Gallmann, J. Am. Coll. Nutr., 27, 677−689 (2008).CrossRefGoogle Scholar
  5. 5.
    P. C. Molan, Am. J. Clin. Dermatol., 2, 13–19 (2001).CrossRefGoogle Scholar
  6. 6.
    A. Meda, C. E. Lamien, M. Romito, J. Millogo, and O. G. Nacoulma, Food Chem., 91, 571–577 (2005).CrossRefGoogle Scholar
  7. 7.
    Y. H. Wong and S. Tayyab, Process Biochem., 47, 1933–1943 (2012).CrossRefGoogle Scholar
  8. 8.
    E. A. Wehry, In Handbook of Instrumental Techniques for Analytical Chemistry, Prentice Hall Inc., New Jersey, 507–539 (1997).Google Scholar
  9. 9.
    J. Janatova, J. K. Fuller, and M. J. Hunter, J. Biol. Chem., 243, 3612–3622 (1968).Google Scholar
  10. 10.
    J. R. Warren and J. A. Gordon, J. Phys. Chem., 70, 297–300 (1966).CrossRefGoogle Scholar
  11. 11.
    C. N. Pace and J. M. Scholtz, In Protein Structure: A Practical Approach, Oxford University Press, Oxford, 299–321 (1997).Google Scholar
  12. 12.
    N. Ahmad and M. A. Qasim, Eur. J. Biochem., 227, 563−565 (1995).CrossRefGoogle Scholar
  13. 13.
    S. Tayyab, N. Sharma, and M. M. Khan, Biochem. Biophys. Res. Commun., 277, 83−88 (2000).CrossRefGoogle Scholar
  14. 14.
    P. Andrade, F. Ferreres, M. I. Gil, and F. A. Tomas-Barberan, Food Chem., 60, 79–84 (1997).CrossRefGoogle Scholar
  15. 15.
    V. Kaskoniene, A. Maruska, O. Kornysova, N. Charczun, M. Ligor, and B. Buszewski, Chem. Technol., 52, 74–80 (2009).Google Scholar
  16. 16.
    A. Papadopoulou, R. J. Green, and R. A. Frazier, J. Agric. Food Chem., 53, 158–163 (2005).CrossRefGoogle Scholar
  17. 17.
    S. M. T. Shaikh, J. Seetharamappa, P. B. Kandagal, and D. H. Manjunatha, Int. J. Biol. Macromol., 41, 81–86 (2007).CrossRefGoogle Scholar
  18. 18.
    F. Wang, W. Huang, and Z. Dai, J. Mol. Struct.. 875, 509–514 (2008).CrossRefADSGoogle Scholar
  19. 19.
    Z. D. Fu, X. Q. Chen, and F. P. Jiao, Lat. Am. Appl. Res., 42, 211–216 (2012).Google Scholar
  20. 20.
    M. Skrt, E. Benedik, C. Podlipnik, and N. P. Ulrih, Food. Chem., 135, 2418–2424 (2012).CrossRefGoogle Scholar
  21. 21.
    X. Li., G. Wang, D. Chen, and Y. Lu, Mol. BioSyst., 10, 326–337 (2014).CrossRefGoogle Scholar
  22. 22.
    S. Tayyab, B. Ahmad, Y. Kumar, and M. M. Khan, Int. J. Biol. Macromol., 30, 17–22 (2002).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Institute of Biological SciencesUniversity of MalayaKuala LumpurMalaysia

Personalised recommendations