Advertisement

Journal of Applied Spectroscopy

, Volume 82, Issue 5, pp 824–830 | Cite as

Transformation of Light Polarization Using Nanoporous Alumina Films

  • V. A. Dlugunovich
  • A. Yu. Zhumar
  • S. N. Kurilkina
  • N. I. Mukhurov
Article

The polarization transformations of light interacting with nanoporous alumina films were investigated theoretically and experimentally. It was shown that a compact device based on nanoporous alumina film could be designed to control light polarization by functioning in various regimes, in particular, as quarter-wave and half-wave plates. It was established that the regimes could be switched from one to another by varying the film orientation relative to the incident light beam. It was found that quasi-circularly polarized light beams with a wide angular spectrum could be formed in a broad spectral region by using the nanoporous alumina film.

Keywords

nanoporous alumina film Stokes parameters quarter-wave plate half-wave plate 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. G. Gullis, I. T. Canham, and P. D. J. Calcott, J. Appl. Phys., 82, 909–965 (1997).CrossRefADSGoogle Scholar
  2. 2.
    O. Bisi, S. Ossicini, and L. Pavesi, Surf. Sci. Rep., 38, 1–126 (2000).CrossRefADSGoogle Scholar
  3. 3.
    W. Theiss, Surf. Sci. Rep., 29, 91–192 (1997).CrossRefADSGoogle Scholar
  4. 4.
    F. J. P. Schuurmans, D. Vanmaekelbergh, J. van de Lagemaat, and A. Lagendijk, Science, 284, 141–143 (1999).CrossRefADSGoogle Scholar
  5. 5.
    L. M. Lyn’kov and N. I. Mukhurov, Microstructures Based on Anodic Alumina Technology [in Russian], Bestprint, Minsk (2002).Google Scholar
  6. 6.
    I. V. Gasenkova, N. I. Masurenko, and E. V. Ostapenko, Poverkhnost Rentgen. Sinkhrotron. Neutron. Issled., 10, 96–101(2011).Google Scholar
  7. 7.
    H. Masuda, K. Yada, and A. Osaka, J. Appl. Phys., 37, L1340–L1342 (1998).CrossRefADSGoogle Scholar
  8. 8.
    O. Jessensky, F. Muller, and U. Gosele, Appl. Phys. Lett., 72, 1173–1175 (1998).CrossRefADSGoogle Scholar
  9. 9.
    J. De Laet, H. Terryn, and J. Vereecken, Thin Solid Films, 320, 241–252 (1998).CrossRefGoogle Scholar
  10. 10.
    K. Yasui, K. Nishio, H. Nunokawa, and H. Masuda, J. Vac. Sci. Technol., B, 23, L9–L12 (2005).CrossRefGoogle Scholar
  11. 11.
    H. Masuda, M. Ohya, H. Asoh, M. Nakao, M. Nohtomi, and T. Tamamura, Jpn. J. Appl. Phys., 38, L1403–L1405 (1999).CrossRefADSGoogle Scholar
  12. 12.
    K. Sokolov, R. Drezek, and K. Gossage, Opt. Express, 5, 302–307 (1999).CrossRefADSGoogle Scholar
  13. 13.
    C.-I. Chuang, S.-H. Lin, and Y.-F. Chao, Opt. Lasers Eng., 51, 861–866 (2013).CrossRefGoogle Scholar
  14. 14.
    P.-C. Chen, Y. L. Lo, T. C. Yu, J. F. Lin, and T. T. Yang, Opt. Express, 17, 15860–15884 (2009).CrossRefADSGoogle Scholar
  15. 15.
    Y.-L. Lo, T.-T.-H. Pham, and P.-C. Chen, Opt. Express, 18, 9133–9150 (2010).CrossRefADSGoogle Scholar
  16. 16.
    C.-C. Liao and Y.-L. Lo, Opt. Express, 21, 16831–16851 (2013).CrossRefADSGoogle Scholar
  17. 17.
    L. A. Golovan’, V. Yu. Timoshenko, and P. K. Koshkarev, Usp. Fiz. Nauk, 177, 619–638 (2007).CrossRefGoogle Scholar
  18. 18.
    C. J. Brinker, Y. Lu, A. Sellinger, and H. Fan, Adv. Mater., 11, 579–585 (1999).CrossRefGoogle Scholar
  19. 19.
    H. Fan, H. R. Bentley, K. R. Kathan, P. Clem, Y. Lu, and C. J. Brinker, J. Non-Cryst. Solids, 285, 79–83 (2001).Google Scholar
  20. 20.
    P. C. A. Alberius, K. L. Frindell, R. C. Hayward, E. J. Karmer, G. D. Stucky, and B. F. Chmelka, Chem. Mater., 14, 3284–3294 (2002).CrossRefGoogle Scholar
  21. 21.
    B. W. Eggiman, M. P. Tate, and H. W. Hillhouse, Chem. Mater., 18, 723–730 (2006).CrossRefGoogle Scholar
  22. 22.
    A. Navid and L. Pilon, Thin Solid Films, 516, 4159–4167 (2008).CrossRefADSGoogle Scholar
  23. 23.
    A. Loni, R. J. Bozeat, R. Arens-Fischer, H. Munder, H. Lueth, H. F. Arrand, and T. M. Benson, Thin Solid Films, 276, 143–146 (1996).CrossRefADSGoogle Scholar
  24. 24.
    H. F. Arrand, T. M. Benson, A. Loni, M. G. Krueger, M. Thoenissen, and H. Lueth, Electron. Lett., 33, 1724–1725 (1997).CrossRefGoogle Scholar
  25. 25.
    A. Jain, S. Rogojevic, S. Ponoth, N. Agarwal, I. Matthew, W. N. Gill, P. Persans, M. Tomozawa, J. L. Plawsky, and E. Simonyi, Thin Solid Films, 398, 513–522 (2001).CrossRefADSGoogle Scholar
  26. 26.
    R. J. Martin-Palma, V. Torres-Costa, M. Arroyo-Hernandez, M. Manso, J. Perez-Rigueiro, and J. M. Martinez-Duart, Microelectron. J., 35, 45–48 (2004).CrossRefGoogle Scholar
  27. 27.
    M. Arroyo-Hernandez, R. J. Martin-Palma, J. Perez-Rigueiro, J. P. Garcia-Ruiz, J. L. Garcia-Fierro, and J. M. Martinez-Duart, Mater. Sci. Eng., C, 23, 697–701 (2003).CrossRefGoogle Scholar
  28. 28.
    S. Chan, Y. Li, L. J. Rothberg, B. L. Miller, and P. M. Fauchet, Mater. Sci. Eng., 15, 277–282 (2001).CrossRefGoogle Scholar
  29. 29.
    M. G. Berger, M. Thonissen, R. Arensfischer, H. Munder, H. Luth, M. Arntzen, and W. Theiss, Thin Solid Films, 255, 313–316 (1995).CrossRefADSGoogle Scholar
  30. 30.
    J. Diener, N. Kunzner, D. Kovalev, E. Gross, V. Yu. Timoshenko, G. Polisski, and F. Koch, Appl. Phys. Lett., 78, 3887–3889 (2001).CrossRefADSGoogle Scholar
  31. 31.
    M. Kruger, M. Marso, M. G. Berger, M. Thonissen, S. Billat, R. Loo, W. Reets, H. Luth, S. Hilbrich, R. Arens-Fischer, and P. Grosse, Thin Solid Films, 297, 241–244 (1997).CrossRefADSGoogle Scholar
  32. 32.
    S. Zangooie, M. Schubert, C. Trimble, D. W. Thompson, and J. A. Woollam, Appl. Opt., 40, 906–912 (2001).CrossRefADSGoogle Scholar
  33. 33.
    S. Zangooie, R. Jansson, and H. Arwin, J. Appl. Phys., 86, 850–858 (1999).CrossRefADSGoogle Scholar
  34. 34.
    C. Mazzoleni and L. Pavesi, Appl. Phys. Lett., 67, 2983–2985 (1995).CrossRefADSGoogle Scholar
  35. 35.
    B. O’Regan and M. Gratzel, Nature, 353, 737–740 (1991).CrossRefADSGoogle Scholar
  36. 36.
    P. Ravirajan, S. A. Haque, D. Poplavskyy, J. R. Durrant, D. D. C. Bradley, and J. Nelson, Thin Solid Films, 451, 624–629 (2004).CrossRefADSGoogle Scholar
  37. 37.
    L. Schmidt-Mende and M. Gratzel, Thin Solid Films, 500, 296–301 (2006).CrossRefADSGoogle Scholar
  38. 38.
    H. Masuda and K. Fukuda, Science, 268, 1466–1468 (1995).CrossRefADSGoogle Scholar
  39. 39.
    N. I. Mukhurov, I. V. Gasenkova, and I. M. Adruhovich, J. Mater. Sci. Nanotechnol., 1, 110–116 (2014).Google Scholar
  40. 40.
    F. I. Fedorov, Theory of Gyrotropy [in Russian], Nauka i Tekhnika, Minsk (1976).Google Scholar
  41. 41.
    V. N. Snopko, Izmer. Tekh., 12, 19–22 (2008).Google Scholar
  42. 42.
    R. Atkinson, W. R. Hendren, G. A. Wurtz, W. Dickson, A. V. Zayats, P. Evans, and R. J. Pollard, Phys. Rev. B: Condens. Matter Mater. Phys., 73, 235402 (1–8) (2006).Google Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • V. A. Dlugunovich
    • 1
  • A. Yu. Zhumar
    • 1
  • S. N. Kurilkina
    • 1
  • N. I. Mukhurov
    • 1
  1. 1.B. I. Stepanov Institute of PhysicsNational Academy of Sciences of BelarusMinskBelarus

Personalised recommendations