Advertisement

Journal of Applied Spectroscopy

, Volume 82, Issue 3, pp 445–449 | Cite as

Preparation and Absorption Spectral Property of a Multifunctional Water-Soluble Azo Compound with D-π-A Structure, 4-(4- Hydroxy-1-Naphthylazo)Benzoic Acid

  • L. Hu
  • H. Lv
  • C. G. Xie
  • W. G. Chang
  • Z. Q. Yan
Article
  • 48 Downloads

A multifunctional water-soluble azo dye with the D-π-A conjugated structure, 4-(4-hydroxy-1-naphthylazo) benzoic acid ( HNBA), was designed and synthesized using 1-naphanol as the electron donator, benzoic acid as the electron acceptor, and −N=N− as the bridging group. After its structure was characterized by FTIR, 1H NMR, and element analysis, the UV-Vis absorption spectral performance of the target dye was studied in detail. The results showed that the dye, combining hydroxyl group, azo group, and carboxyl group, possessed excellent absorption spectral properties (ε = 1.2·104 l·mol−1·cm−1) changing with pH and solvents. In particular, in polar and protonic water, it had excellent optical response to some metal ions, i.e., Fe3+ and Pb2+, which might make it a latent colorimetric sensor for detecting heavy metal ions.

Keywords

4-(4-hydroxy-1-naphthylazo)benzoic acid preparation absorption spectrum colorimetric sensor 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    G. Leng, L. Feng, S. Li, S. Qian, and D. Dan, Environ. Forens ics, 14, 9–15 (2013).CrossRefGoogle Scholar
  2. 2.
    M. Legrand, R. Lam, M. Jensen-Fontaine, E. Salin, and H. Chan, J. Anal. At. Spectrom., 19, 1287–1288 (2004).CrossRefGoogle Scholar
  3. 3.
    H. Kodamatani, A. Matsuyama, K. Saito, Y. Kono, R. Kanzaki, and T. Tomiyasu, Anal. Sci., 28, 959–965 (2012).CrossRefGoogle Scholar
  4. 4.
    T. Oshea and S. Lunte, Anal. Chem., 65, 247–250 (1993).CrossRefGoogle Scholar
  5. 5.
    W. Lu, X. Qin, S. Liu, G. Chang, Y. Zhang, and Y. Luo, Anal. Chem., 84, No. 12, 5351–5357 (2012).CrossRefGoogle Scholar
  6. 6.
    Z. Yan, H. Xue, K. Berning, Y. Lam, and C. Lee, ACS App l. Mater. Interfaces, 6, No. 24, 22761–22768 (2014).CrossRefGoogle Scholar
  7. 7.
    Z. Yan, M. Yuen, L. Hu, P. Sun, and C. Lee, RSC Adv., 4, 48373–48388 (2014).CrossRefGoogle Scholar
  8. 8.
    L. Hu, L. Nie, G. Xu, H. Shi, X. Xu, X. Zhang, and Z. Yan, RSC Adv., 4, 19370–19374 (2014).CrossRefGoogle Scholar
  9. 9.
    L. Hu, Z. Yan, and H. Xu, RSC Adv., 3, 7667–7676 (2013).CrossRefGoogle Scholar
  10. 10.
    Z. Yan, H. Xu, S. Guang, X. Zhao, W. Fan, and X. Liu, Adv. Funct. Mater., 22, 345–352 (2012).CrossRefGoogle Scholar
  11. 11.
    D. Avnir, S. Braun, and M. Ottolenghi, ACS Symp. Ser., 499, 384–404 (1992).CrossRefGoogle Scholar
  12. 12.
    S. Basu, Ind. Eng. Chem. Prod. Res. Dev., 23, 183–186 (1984).CrossRefGoogle Scholar
  13. 13.
    13 . Z. Yan, S. Guang, H. Xu, and X. Liu, Dyes Pigm., 99, 720–726 (2013).CrossRefGoogle Scholar
  14. 14.
    B. Kolli, S. Pandey , S. Mishra, T. Kanai, M. Joshi, R. Mohan, T. Dhami, L. Kukreja, and A. Samui, J. Polym. Sci., Part A: Polym. Chem., 51, 4317–4324 (2013).ADSCrossRefGoogle Scholar
  15. 15.
    Y. Zhang, J. Martinez-Perdiguero, U. Baumeister, C. Walker, J. Etxebarria, M. Prehm, J. Ortega, C. Tschierske, M. O’Callaghan, A. Harant, and M. Handschy, J. Am. Chem. Soc., 131, 18386–18392 (2009).CrossRefGoogle Scholar
  16. 16.
    F. Li, Y. Zhang, C. Wu, Z. Lin, B. Zhang, and T. Guo, Vacuum, 86, 1895–1897 (2012).ADSCrossRefGoogle Scholar
  17. 17.
    T. Kuo, S. Lin, Y. Hung, J. Horng, and M. Houng, IEEE Photonics Technol. Lett., 23, 362–364 (2011).CrossRefGoogle Scholar
  18. 18.
    S. Chen and C. Yu, Microsc. Res. Technol., 73, 202–205 (2010).Google Scholar
  19. 19.
    Z. Yan, L. Hu, L. Nie, and H. Lv, Spectrochim. Acta, A, 79, 661–665 (2011).ADSCrossRefGoogle Scholar
  20. 20.
    L. Hu, Y. Zhang, L. Nie, C. Xie, and Z. Yan, Spectrochim. Acta, A, 104, 87–91 (2013).ADSCrossRefGoogle Scholar
  21. 21.
    F. Gou, X. Jiang, B. Li, H. Jing, and Z. Zhu, ACS Appl. Mater. Interfaces, 5, 12631–12637 (2013).CrossRefGoogle Scholar
  22. 22.
    H. Singh, J. Sindhu, J. Khurana, C. Sharma, and K. Aneja, RSC Adv., 4, 5915–5926 (2014).CrossRefGoogle Scholar
  23. 23.
    E. Rufchahi, H. Pouramir, M. Yazdanbakhsh, H. Yousefi , M. Bagheri, and M. Rassa, Chin. Chem. Lett., 24, 425–428 (2013).CrossRefGoogle Scholar
  24. 24.
    M. Jeanmougin, D. Bonvalet, J. Civatte, A. Ramelet, and C. Vilmer, Ann. Dermatol. Vener., 111, 437–444 (1984).Google Scholar
  25. 25.
    H. El-Desoky, M. Ghoneim, R. El-Sheikh, and N. Zidan, J. Hazard. Mater., 175, 858–865 (2010).CrossRefGoogle Scholar
  26. 26.
    C. Carliell , S. Barclay, C. Shaw, A. Wheatley, and C. Buckley, Environ. Technol., 19, 1133–1137 (1998).CrossRefGoogle Scholar
  27. 27.
    J. Yun and H. Choi, Talanta, 52, 893–902 (2000).CrossRefGoogle Scholar
  28. 28.
    R. Ebdelli, A. Rouis, R. Mlika, I. Bonnamour, H. Ouada, and J. Davenas, J. Mol. Struct., 1006, 210–215 (2011).Google Scholar
  29. 29.
    Z. Yan, Y. Chen, S. Guang, H. Xu, and L. Li, Polym. Sci. Ser. B, 53, 535–539 (2011).CrossRefGoogle Scholar
  30. 30.
    Y. Shigeyuki, H. Yutaka, H. Masahiko, N. Hiroyuki, S. Yoshiaki, and A. Ajayaghosh, Org. Lett., 9, 1999–2002 (2007).CrossRefGoogle Scholar
  31. 31.
    A. Ajayaghosh, P. Chithra, R. Varghese, and K. Divya, C hem. Commun., 969–971 (2008).Google Scholar
  32. 32.
    Gaussian 03, revisio n A.1, Gaussian, Inc., Pittsburgh, PA (2004).Google Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • L. Hu
    • 1
  • H. Lv
    • 1
  • C. G. Xie
    • 1
  • W. G. Chang
    • 1
  • Z. Q. Yan
    • 1
  1. 1.Anhui Provincial Laboratory of Biomimetic Sensor and Detecting Technology & Solar Photovoltaic Materials Research CenterWest Anhui UniversityLu’anChina

Personalised recommendations