Advertisement

Journal of Applied Spectroscopy

, Volume 82, Issue 3, pp 403–408 | Cite as

Bessel Plasmon-Polaritons at the Boundaries of Metamaterials with Near-Zero Dielectric Constants

  • S. N. Kurilkina
  • V. N. Belyi
  • N. S. Kazak
  • M. A. Binhussain
Article
  • 54 Downloads

The conditions for and features of the excitation of Bessel plasmon-polaritons (BPP) are examined at the boundary of a hyperbolic metamaterial with a near-zero dielectric constant made of a dielectric matrix with metal nanorods embedded in it normal to its surface. This material is compared with BPP that have traditional surface plasmons. The effect of the absorption of the metamaterial on the excitation of BPP is studied. The possibility of changes in the direction of the radial energy fl ows in BPP excited at the surface of an isotropic medium, a hyperbolic metamaterial, is demonstrated and the conditions for these changes are determined.

Keywords

Bessel light beam metamaterial plasmon-polariton 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. B. Pendry, Phys. Rev. Lett., 85, 3966–3969 (2000).ADSCrossRefGoogle Scholar
  2. 2.
    N. Fang, H. Lee, C. Sun, and X. Zhang, Science, 308, 534–537 (2005).ADSCrossRefGoogle Scholar
  3. 3.
    J. B. Pendry, D. Schurig, and D. R. Smith, Science, 312, 1780–1782 (2006).MathSciNetADSCrossRefMATHGoogle Scholar
  4. 4.
    G. Castaldi, S. Savoia, and V. Galdi, Phys. Rev. B, 86, 115123 (2012).ADSCrossRefGoogle Scholar
  5. 5.
    B. Wang and K. M. Huang, PIER, 106, 107–119 (2010).CrossRefGoogle Scholar
  6. 6.
    J. Gao, L. Sun, H. Deng, C. J. Mathai, S. Gangopadhyay, and X. Yang, Appl. Phys. Lett., 103, 051111 (2013).ADSCrossRefGoogle Scholar
  7. 7.
    J. Durnin, J. Opt. Soc. Am. A, 4, 651–654 (1987).ADSGoogle Scholar
  8. 8.
    J. Durnin, J. J. Muceli, and J. H. Eberly, Phys. Rev. Lett., 58, 1499–1501 (1987).ADSCrossRefGoogle Scholar
  9. 9.
    P. Sprangle and B. Hafizi, Phys. Rev. Lett., 66, 837–839 (1991).ADSCrossRefGoogle Scholar
  10. 10.
    Z. Bouchal, J. Wagner, and M. Chlup, Opt. Commun., 151, 207–211 (1998).ADSCrossRefGoogle Scholar
  11. 11.
    Y. Lin, W. Seka, J. H. Eberly, H. Huang, and D. L. Brown, Appl. Opt., 31, 2708–2713 (1992).ADSCrossRefGoogle Scholar
  12. 12.
    D. McGloin and K. Dholakia, Contemp. Phys., 46, 15–28 (2005).ADSCrossRefGoogle Scholar
  13. 13.
    J. Turunen and A. T. Friberg, Pure Appl. Opt., 2, 51–60 (1993).ADSCrossRefGoogle Scholar
  14. 14.
    R. Horak, Z. Bouchal, and J. Bajer, Opt. Commun., 133, 315–327 (1997).ADSCrossRefGoogle Scholar
  15. 15.
    G. Milne, K. Dholakia, D. McGloin, K. Volke-Sepulveda, and P. Zemanek, Opt. Express, 15, 13972–13987 (2007).ADSCrossRefGoogle Scholar
  16. 16.
    V. Garcés-Chavéz, D. Roskey, M. D. Summers, H. Melville, D. McGloin, E. M. Wright, and K. Dholakia, Appl. Phys. Lett., 8, 4001–4003 (2004).ADSCrossRefGoogle Scholar
  17. 17.
    L. Paterson, E. Papagiakoumou, G. Milne, V. Garcés-Cháves, T. Briscoe, W. Sibbett, L. Dholakia, and A. Riches, J. Biomed. Opt., 12, 054017 (2007).ADSCrossRefGoogle Scholar
  18. 18.
    T. Cižmár, V. Garcés-Chávez, K. Dholakia, and P. Zemánek, Appl. Phys. Lett., 86, 101 (2005).Google Scholar
  19. 19.
    S. Rushin and A. Leizer, J. Opt. Soc. Am. A, 15, 1139–1143 (1998).ADSGoogle Scholar
  20. 20.
    S. N. Kurilkina, V. N. Belyi, and N. S. Kazak, Opt. Commun., 283, 3860–3868 (2010).ADSCrossRefGoogle Scholar
  21. 21.
    Q. Zhang, Opt. Lett., 31, 1726–1728 (2006).ADSCrossRefGoogle Scholar
  22. 22.
    Muhanna K. Al-Muhanna, S. N. Kurilkina, V. N. Belyi, and N. S. Kazak, J. Opt., 13, 105703 (2011).ADSCrossRefGoogle Scholar
  23. 23.
    H. Kano, D. Nomura, and H. Shibuya, Appl. Opt., 43, 2409–2411 (2004).ADSCrossRefGoogle Scholar
  24. 24.
    T. Grosjean, D. Courjon, and D. van Labeke, J. Microsc., 210, 319–323 (2003).MathSciNetCrossRefGoogle Scholar
  25. 25.
    J. Zapata-Rodriguez, S. Vuković, M. R. Belić, D. Pastor, and J. J. Miret, Opt. Express, 19, 19572–19581 (2011).ADSCrossRefGoogle Scholar
  26. 26.
    E. N. Economou, Phys. Rev., 182, 539–554 (1969).ADSCrossRefGoogle Scholar
  27. 27.
    J. J. Burke, G. I. Stegeman, and T. Tamir, Phys. Rev. B, 33, 5186–5201 (1986).ADSCrossRefGoogle Scholar
  28. 28.
    A. V. Zayats, I. I. Smolyaninov, and A. A. Maradudin, Phys. Rep., 408, 131–134 (2005).ADSCrossRefGoogle Scholar
  29. 29.
    M. Yamamoto, Rev. Polarograph., 48, 209–237 (2002).CrossRefGoogle Scholar
  30. 30.
    W. Cai and V. Shalaev, Optical Metamaterials. Fundamentals and Applications, Springer, New York (2010).Google Scholar
  31. 31.
    R. Atkinson, W. R. Hendren, G. A. Wurtz, W. Dickson, A. V. Zayats, P. Evans, and R. J. Pollard, Phys. Rev. B, 73, 235402 (2006).ADSCrossRefGoogle Scholar
  32. 32.
    G. B. Arfken, H. J. Weber, and F. E. Harris, Mathematical Methods for Physicists, Academic Press, Orlando (FL) (1985).Google Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • S. N. Kurilkina
    • 1
  • V. N. Belyi
    • 1
  • N. S. Kazak
    • 1
  • M. A. Binhussain
    • 2
  1. 1.B. I. Stepanov Institute of PhysicsNational Academy of Sciences of BelarusMinskBelarus
  2. 2.National Center for Building SystemsKing Abdulaziz City for Science and TechnologyRiyadhSaudi Arabia

Personalised recommendations