Journal of Applied Spectroscopy

, Volume 82, Issue 3, pp 390–395 | Cite as

Effect of Preparation Conditions on the Fundamental Absorption Edge of Y2O3 Thin Films


The fundamental absorption edge of Y2O3 thin fi lms obtained by discrete evaporation and high-frequency (HF) onplasma sputtering in various atmospheres was studied using optical spectroscopy. It was ascertained that the optical bandgap Eg increased from 5.65 eV for Y2O3 fi lms obtained by discrete evaporation to 5.77 eV for fi lms obtained by HF sputtering in Ar to 5.90 eV for fi lms obtained by HF sputtering in O2. The effective reduced mass of free charge carriers was estimated. It was found that the concentration of free charge carriers in Y2O3 fi lms obtained by ionplasma sputtering in Ar with 50% O2 was N = 1.34·1017 cm–3 whereas sputtering in 100% O2 gave N = 1.38·1018 cm–3, which was typical of degenerate semiconductors. It was shown that the shift of the fundamental absorption edge in Y2O3 thin fi lms after addition of O2 to the sputtering atmosphere was most likely caused by the Burstein–Moss effect.


yttrium oxide thin fi lm fundamental absorption edge 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    V. H. Mudavakkat, V. V. Atuchin, V. N. Kruchinin, A. Kayani, and C. V. Ramana, Opt. Mater., 34, No. 5, 893–900 (2012).ADSCrossRefGoogle Scholar
  2. 2.
    J. Hassinen, J. Holsa, J. Niittykoski, T. Laamanen, M. Lastusaari, M. Malkamaki, and P. Novak, Opt. Mater., 31, No. 12, 1751–1754 (2009).ADSCrossRefGoogle Scholar
  3. 3.
    Y. Q. Li, N. Hirosaki, R.-J. Xie, T. Takeda, and M. Mitomo, J. Lumin., 130, No. 7, 1147–1153 (2010).CrossRefGoogle Scholar
  4. 4.
    M. E. Globus and B. V. Grinev, Inorganic Scintillators. New and Traditional Materials [in Russian], Akta, Kharkov (2001).Google Scholar
  5. 5.
    S. Som and S. K. Sharma, J. Phys. D: Appl. Phys., 45, 415102 (2012).CrossRefGoogle Scholar
  6. 6.
    K. Mishra, Y. Dwivedi, and S. B. Rai, Appl. Phys. B: Lasers Opt., 106, No. 1, 101–105 (2012).ADSCrossRefGoogle Scholar
  7. 7.
    C. Shanga, X. Shang, Y. Qu, and M. Li, Chem. Phys. Lett., 501, 480–484 (2011).ADSCrossRefGoogle Scholar
  8. 8.
    H. J. Lee, K. P. Kim, G. Y. Hong, and J. S. Yoo, J. Lumin., 130, 941–946 (2010).CrossRefGoogle Scholar
  9. 9.
    R. Swanepoel, J. Phys. E: Sci. Instrum., 16, No. 12, 1214–1218 (1983).ADSCrossRefGoogle Scholar
  10. 10.
    A. S. Valeev, Opt. Spektrosk., 15, No. 4, 500–535 (1963).MathSciNetGoogle Scholar
  11. 11.
    O. M. Bordun, I. O. Bordun, and I. I. Kukharskii, Zh. Prikl. Spektrosk., 79, No. 6, 984–989 (2012) [O. M. Bordun, I. O. Bordun, and I. Yo. Kukharskyy, J. Appl. Spectrosc., 79, No. 6, 982–987 (2012)].Google Scholar
  12. 12.
    I. M. Tsidil′kovskii, Band Structure of Semiconductors [in Russian], Nauka, Moscow (1978).Google Scholar
  13. 13.
    J. I. Pankove, Optical Processes in Semiconductors [in Russian], Mir, Moscow (1973).Google Scholar
  14. 14.
    H. Kajikawa, Y. Fukumoto, S. Hayashi, K. Shibutani, R. Ogawa, and Y. Kawate, IEEE Trans. Magn., 27, No. 2, 1422–1425 (1991).ADSCrossRefGoogle Scholar
  15. 15.
    G. Betz and G. K. Wehner, in: Sputtering by Particle Bombardment II, R. Berisch (ed.), Topics in Applied Physics, Vol. 52, Springer, New York (1983) [Russian translation, pp. 24–133].Google Scholar
  16. 16.
    K. Meyer, I. K. Schuller, and C. M. Faiko, J. Appl. Phys., 52, No. 9, 5803–5805 (1981).ADSCrossRefGoogle Scholar
  17. 17.
    H. Mase, T. Tanabe, and G. Miyamoto, J. Appl. Phys., 50, No. 5, 3684–3686 (1979).ADSCrossRefGoogle Scholar
  18. 18.
    C. Park, M. Bujor, and H. Poppa, Thin Solid Films, 113, 337–344 (1984).ADSCrossRefGoogle Scholar
  19. 19.
    H. L. Hartnagel, A. L. Dawar, A. K. Jain, and C. Jagadish, Semiconducting Transparent Thin Films, Institute of Physics Publ., Bristol (1995), pp. 4–7.Google Scholar
  20. 20.
    T. P. McLean, Prog. Semicond., 5, 53–58 (1960).Google Scholar
  21. 21.
    B. F. Ormont, in: Introduction to Physical Chemistry and Semiconductor Crystal Chemistry [in Russian], VysshayaShkola, Moscow (1973).Google Scholar
  22. 22.
    K. Sakai, N. Kakeno, T. Ikari, S. Shirakata, T. Sakemi, K. Awai, and T. Yamamoto, J. Appl. Phys., 99, No. 4, 043508 (2006).ADSCrossRefGoogle Scholar
  23. 23.
    J. Jia, A. Takasaki, N. Oka, and Y. Shigesato, J. Appl. Phys., 112, No. 1, 013718 (2012).ADSCrossRefGoogle Scholar
  24. 24.
    A. Kronenberger, A. Polity, D. M. Hofmann, B. K. Meyer, A. Schleife, and F. Bechstedt, Phys. Rev. B: Condens. Matter Mater. Phys., 86, No. 11, 115334 (2012).ADSCrossRefGoogle Scholar
  25. 25.
    J. Kumar and A. K. Srivastava, J. Appl. Phys., 115, No. 13, 134904 (2014).ADSCrossRefGoogle Scholar
  26. 26.
    M. J. Garde and T. L. Alford, Appl. Phys. Lett., 99, No. 5, 051901 (2011).ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • O. M. Bordun
    • 1
  • I. O. Bordun
    • 1
  • I. Yo. Kukharskyy
    • 1
  1. 1.Ivan Franko L′viv National UniversityL′vivUkraine

Personalised recommendations