Journal of Applied Spectroscopy

, Volume 82, Issue 2, pp 329–335 | Cite as

Nanostructure Formation on the Surface of YAG:Nd Crystal by ARF Laser Irradiation

  • S. Panahibakhsh
  • S. Jelvani
  • M. Mollabashi
  • M. H. Maleki

In this paper, nanostructure formation on the surface of a YAG:Nd single crystal by ArF laser irradiation is reported. The minimum diameter and height of the observed structures are about 100 and 20 nm, respectively. The morphology of the structures, which was analyzed by both scanning electron and atomic force microscopy (SEM & AFM)), indicates the growth of structures with increasing the number of laser pulses. With irradiation of pure YAG crystals under similar experimental conditions, no nanostructures are observed on the surface of the crystal. It reveals that the formation of the nano-mounds is associated with, as Energy Dispersive X-ray (EDS) spectroscopy confirms, the presence of Nd in the structures. It seems that dopant diffusion, redistribution, and cluster formation through the strain field in the crystal lead to the nanostructure development.


nanostructure formation YAG:Nd crystal ArF laser 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J. Reif, F. Costache, and M. Bestehorn, Recent Advances in Laser Processing of Materials, Amsterdam, Elsevier, 275 (2006).Google Scholar
  2. 2.
    A. Medvid, Y. Fukuda, A. Michko, P. Onufrievs, and Y. Anma, Appl. Surf. Sci., 244, 120–123 (2004).CrossRefADSGoogle Scholar
  3. 3.
    K. Tsougeni, G. Boulousis, E. Gogolides, and A. Tserepi, Microelectron. Eng., 85, 1233–1236 (2008).CrossRefGoogle Scholar
  4. 4.
    O. Varlamova, J. Reif, S. Varlamov, and M. Bestehorn, Appl. Surf. Sci., 257, 5465–5469 (2011).CrossRefADSGoogle Scholar
  5. 5.
    B. K. Nayak, K. Sun, Ch. Rothenbach, and M. C. Gupta, Appl. Opt., 50, 2349–2355 (2011).CrossRefGoogle Scholar
  6. 6.
    B. K. Nayak, M. C. Gupta1, and K. W. Kolasinski, Nanotechnology, 18, 195302 (2007).CrossRefADSGoogle Scholar
  7. 7.
    B. K. Nayak and M. C. Gupta, Opt. Laser Eng., 48, 940–949 (2010).CrossRefGoogle Scholar
  8. 8.
    H. Pazokian, A. Selimis, E. Stratakis, M. Mollabashi, J. Barzin, and S. Jelvani, Appl. Surf. Sci., 258, 169–175 (2011).CrossRefADSGoogle Scholar
  9. 9.
    T. Tavera, N. Perez, A. Rodrguez, P. Yurrita, S. M. Olaizola, and E. Castano, Appl. Surf. Sci., 258, 1175–1180 (2011).CrossRefADSGoogle Scholar
  10. 10.
    B. K. Nayak and M. C. Gupta, Opt. Laser Eng., 48, 966–973 (2010).CrossRefGoogle Scholar
  11. 11.
    Y. Lu, S. Theppakuttai, and S. C. Chen, Appl. Phys. Lett., 82, 4143–4145 (2003).CrossRefADSGoogle Scholar
  12. 12.
    J. Reif, M. Ratzke, O. Varlamova, and F. Costache, Mater. Sci. Eng. B, 134, 114–117 (2006).CrossRefGoogle Scholar
  13. 13.
    E. Trave, F. Gonella, and P. Calvelli, Nucl. Instrum. Methods B, 268, 3177–3182 (2010).CrossRefADSGoogle Scholar
  14. 14.
    V. I. Emel'yanov, Laser Phys., 5, 908–916 (1995).Google Scholar
  15. 15.
    V. I. Emel'yanov, Laser Phys., 6, 423–426 (1996).MathSciNetGoogle Scholar
  16. 16.
    A. Medvid, A. Mychko, V. Gnatyuk, S. Levytskyi, and Yu. Naseka, Opt. Mater., 32, 836–839 (2010).CrossRefADSGoogle Scholar
  17. 17.
    V. I. Emel'yanov and Yu. G. Shlykov, Laser Phys., 6, 713–720 (1996).Google Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • S. Panahibakhsh
    • 1
  • S. Jelvani
    • 1
  • M. Mollabashi
    • 2
  • M. H. Maleki
    • 1
  1. 1.Laser and Optics Research School, Nuclear Science and Technology Research InstituteTehranIran
  2. 2.Department of Physics, Iran University of Science and TechnologyTehranIran

Personalised recommendations