Advertisement

Journal of Applied Spectroscopy

, Volume 81, Issue 6, pp 1073–1077 | Cite as

Pyrolysis Product Evolution Characteristics of Bio-Ferment Residue Using Thermogravimetric Analysis, Fourier Transform Infrared Spectroscopy, and Mass Spectrometry

  • Y. Du
  • X. Jiang
  • X. Ma
  • X. Liu
  • G. Lv
  • Y. Jin
  • F. Wang
  • Y. Chi
  • J. Yan
Article

Bio-ferment residues (BR) are wastes produced by a biological fermentation process for the production of antibiotics. In this work, the evolution characteristics of pyrolysis products of BR were studied using TG-FTIR analysis and MS analysis. It was found that species such as H2O, NH3, CH4, carboxylic acid, aldehydes, alkanes, HCN, HNCO, CO, and CO2 were released at a temperature lower than 600°C. Above 600°C, the dominant products were H2, CO, and CO2. Scarcely any acetylene or benzene was observed. HCN and HNCO were found to evolve in a small amount, while other potential pollutants such as H2S, COS, and CS2 were hardly detected.

Keywords

waste pyrolysis thermogravimetric analysis Fourier transform infrared spectroscopy mass spectrometry 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. Sami, K. Annamalai, and M. Wooldridge, Prog. Energ. Combust., 27, No. 2, 171–214 (2001).CrossRefGoogle Scholar
  2. 2.
    Y. Du, X. Jiang, X. Ma, X. Liu, G. Lv, Y. Jin, F. Wang, Y. Chi, and J. Yan, Energ. Fuel, 27, No. 10, 6295–6303 (2013).CrossRefGoogle Scholar
  3. 3.
    Q. Ren, C. Zhao, X. Wu, C. Liang, X. Chen, J. Shen, G. Tang, and Z. Wang, Bioresource Technol., 100, No. 17, 4054–4057 (2009).CrossRefGoogle Scholar
  4. 4.
    D. K. Shen and S. Gu, Bioresource Technol., 100, No. 24, 6496–6504 (2009).CrossRefGoogle Scholar
  5. 5.
    B. Acevedo, C. Barriocanal, and R. Alvarez, Fuel, 113, 817–825 (2013).CrossRefGoogle Scholar
  6. 6.
    S. V. Vassilev, D. Baxter, L. K. Andersen, and C. G. Vassileva, Fuel, 89, No. 5, 913–933 (2010).CrossRefGoogle Scholar
  7. 7.
    J. Parikh, S. A. Channiwala, and G. K. Ghosal, Fuel, 84, No. 5, 487–494 (2005).CrossRefGoogle Scholar
  8. 8.
    M. Balat, M. Balat, E. Kırtay, and H. Balat, Energ. Convers. Manage., 50, No. 12, 3147–3157 (2009).CrossRefGoogle Scholar
  9. 9.
    F. Tian, J. Yu, L. J. McKenzie, J. Hayashi, and C. Li, Energ. Fuel, 21, No. 2, 517–521 (2007).CrossRefGoogle Scholar
  10. 10.
    A. V. Bridgwater, Biomass Bioenergy, 38, 68–94 (2012).CrossRefGoogle Scholar
  11. 11.
    R . Bassilakis, R. M. Carangelo, and M. A. Wojtowicz, Fuel, 80, No. 12, 1765–1786 (2001).CrossRefGoogle Scholar
  12. 12.
    J . Giuntoli, W. De Jong, S. Arvelakis, H. Spliethoff, and A. Verkooijen, J. Anal. Appl. Pyrol., 85, No. 1, 301–312 (2009).CrossRefGoogle Scholar
  13. 13.
    M . A. Serio, D. G. Hamblen, J. R. Markham, and P. R. Solomon, Energ. Fuel, 1, No. 2, 138–152 (1987).CrossRefGoogle Scholar
  14. 14.
    H . Yang, R. Yan, H. Chen, D. H. Lee, and C. Zheng, Fuel, 86, No. 12, 1781–1788 (2007).CrossRefGoogle Scholar
  15. 15.
    K . Hansson, J. Samuelsson, C. Tullin, and L. Åmand, Combust. Flame, 137, No. 3, 265–277 (2004).CrossRefGoogle Scholar
  16. 16.
    K. Hansson, L. Åmand, A. Habermann, and F. Winter, Fuel, 82, No. 6, 653–660 (2003).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Y. Du
    • 1
  • X. Jiang
    • 1
  • X. Ma
    • 2
  • X. Liu
    • 3
  • G. Lv
    • 1
  • Y. Jin
    • 1
  • F. Wang
    • 1
  • Y. Chi
    • 1
  • J. Yan
    • 1
  1. 1.State Key Laboratory of Clean Energy UtilizationZhejiang UniversityHangzhouChina
  2. 2.Industrial Technology Research InstituteZhejiang UniversityHangzhouChina
  3. 3.Zhejiang Jinhua Conba Bio-Pharm.Co., Ltd.JinhuaChina

Personalised recommendations