Advertisement

Journal of Applied Spectroscopy

, Volume 81, Issue 6, pp 983–989 | Cite as

Effect of ZrO2 on the Structure of ZrO2/TiO2/SiO2 Nanocomposites Fabricated by a Template Sol–Gel Method

  • V. V. Zheleznov
  • Yu. V. Sushkov
  • E. I. Voit
  • S. A. Sarin
  • E. É. Dmitrieva
Article

ZrO2/TiO2/SiO2 (ZrO2 up to 6.7 mass%) composites with variable oxide ratios that were fabricated by a template sol–gel method were studied. The morphology was described. The structure was analyzed using scanning electron and confocal laser microscopy, small-angle x-ray scattering, and Raman spectroscopy. It was established that the composites were nanostructured micron-sized tubes of ZrO2/TiO2/SiO2. The microtubes were constructed from nanoparticles with the anatase structure and general formula Ti1-xZrxO2 (x = 0–0.05). Changes of Raman spectra were examined as a function of ZrO2 content in the composites and the annealing temperature. The contribution of optical phonon scattering to the ν8(E1g) peak position was determined. The ν4(B1g) peak position and the gyration radius of the nanocrystallites were shown to be related.

Keywords

titanium dioxide zirconium dioxide nanocomposites Raman spectroscopy template sol–gel method 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    G. S. Zakharova, V. L. Volkova, V. V. Ivanovskaya, and A. L. Ivanovskii, Usp. Khim., 74, No. 7, 651–685 (2005).CrossRefGoogle Scholar
  2. 2.
    A. Kubacka, M. Fernández-García, and G. Colón, Chem. Rev., 112, 1555–1614 (2012).CrossRefGoogle Scholar
  3. 3.
    X. Chen and S. S. Mao, Chem. Rev., 107, No. 7, 2891–2959 (2007).CrossRefGoogle Scholar
  4. 4.
    B. M. Reddy and A. Khan, Catal. Rev.: Sci. Eng., 47, No. 2, 257–296 (2005).CrossRefGoogle Scholar
  5. 5.
    E. López-López, R. Moreno, and C. Baudín, Bol. Soc. Esp. Ceram. Vidrio, 50, No. 4, 169–178 (2011).CrossRefGoogle Scholar
  6. 6.
    J. C. Yu, J. Lin, and R. W. M. Kwok, J. Phys. Chem. B, 102, 5094–5098 (1998).CrossRefGoogle Scholar
  7. 7.
    A. Mattsson, C. Lejon, V. Štengl, S. Bakardjieva, F. Opluštil, P. O. Andersson, and L. Österlund, Appl. Catal. B, 92, 401–410 (2009).CrossRefGoogle Scholar
  8. 8.
    L. Österlund, A. Mattsson, M. Leideborg, and G. Westin, Ceram. Eng. Sci. Proc., 28, No. 6, 175–186 (2007).Google Scholar
  9. 9.
    M. D. Hernández-Alonso, J. M. Coronado, B. Bachiller-Baeza, M. Fernández-Garcia, and J. Soria, Chem. Mater., 19, 4283–4291 (2007).CrossRefGoogle Scholar
  10. 10.
    V. V. Zheleznov, Yu. V. Sushkov, E. I. Voit, and V. G. Kuryavyi, Zh. Prikl. Spektrosk., 80, No. 4, 596–603 (2013).Google Scholar
  11. 11.
    S. Brunauer, P. H. Emmett, and E. Teller, J. Am. Chem. Soc., 60, No. 2, 309–319 (1938).ADSCrossRefGoogle Scholar
  12. 12.
    J. E. Martin and A. J. Hurd, J. Appl. Crystallogr., 20, No. 2, 61–78 (1987).CrossRefGoogle Scholar
  13. 13.
    S. Hansen, J. Appl. Crystallogr., 36, No. 5, 1190–1196 (2003).CrossRefGoogle Scholar
  14. 14.
    A. V. Semenyuk and D. I. Svergun, J. Appl. Crystallogr., 24, No. 5, 537–540 (1991).CrossRefGoogle Scholar
  15. 15.
    D. Svergun, J. Appl. Crystallogr., 25, No. 4, 495–503 (1992).CrossRefGoogle Scholar
  16. 16.
    T. Ohsaka, F. Izumi, and Y. Fujiki, J. Raman Spectrosc., 7, No. 6, 321–324 (1978).ADSCrossRefGoogle Scholar
  17. 17.
    O. Frank, M. Zukalova, B. Laskova, J. Kürti, J. Koltai, and L. Kavan, Phys. Chem. Chem. Phys., 14, No. 42, 14567–14572 (2012).CrossRefGoogle Scholar
  18. 18.
    A. Li Bassi, D. Cattaneo, V. Russo, C. E. Bottani, E. Barborini, T. Mazza, P. Piseri, P. Milani, F. O. Ernst, K. Wegner, and S. E. Pratsinis, J. Appl. Phys., 98, 074305 (2005).ADSCrossRefGoogle Scholar
  19. 19.
    T. Ohsaka, J. Phys. Soc. Jpn., 48, No. 5, 1661–1668 (1980).ADSCrossRefGoogle Scholar
  20. 20.
    M. C. Mathpal, A. K. Tripathi, M. K. Singh, S. P. Gairola, S. N. Pandey, and A. Agarwal, Chem. Phys. Lett., 555, 182–186 (2013).ADSCrossRefGoogle Scholar
  21. 21.
    D. Wang, B. Chen, and J. Zhao, J. Appl. Phys., 101, 113501 (2007).ADSCrossRefGoogle Scholar
  22. 22.
    V. Y. Davydov, I. N. Goncharuk, M. V. Baidakova, A. N. Smirnov, A. V. Subashiev, J. Aderhold, J. Stemmer, T. Rotter, D. Uffmann, and O. Semchinova, Mater. Sci. Eng.: B, 59, 222–225 (1999).CrossRefGoogle Scholar
  23. 23.
    Z. D. Dohčević-Mitrović, M. J. Šcepanovic, M. U. Grujić-Brojčin, Z. V. Popović, S. B. Bošković, B. M. Matović, M. V. Zinkevich, and F. Aldinger, Solid State Commun., 137, 387–390 (2006).ADSCrossRefGoogle Scholar
  24. 24.
    J. E. Spanier, R. D. Robinson, F. Zhang, S.-W. Chan, and I. P. Herman, Phys. Rev. B: Condens. Matter Mater. Phys., 64, 245407 (2001).ADSCrossRefGoogle Scholar
  25. 25.
    D. Georgescu, L. Baia, O. Ersen, M. Baia, and S. Simon, J. Raman Spectrosc., 43, No. 7, 876–883 (2012).ADSCrossRefGoogle Scholar
  26. 26.
    V. Swamy, D. Menzies, B. C. Muddle, A. Kuznetsov, L. S. Dubrovinsky, Q. Dai, and V. Dmitriev, Appl. Phys. Lett., 88, No. 24, 243103 (2006).ADSCrossRefGoogle Scholar
  27. 27.
    S. K. Gupta, R. Desai, P. K. Jha, S. Sahoob, and D. Kirinc, J. Raman Spectrosc., 41, 350–355 (2010).Google Scholar
  28. 28.
    T. Sekiya, S. Ohta, S. Kamei, M. Hanakawa, and S. Kurita, J. Phys. Chem. Solids, 62, 717–721 (2001).ADSCrossRefGoogle Scholar
  29. 29.
    K. Gao, Phys. Status Solidi B, 244, No. 7, 2597–2604 (2007).ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • V. V. Zheleznov
    • 1
  • Yu. V. Sushkov
    • 1
  • E. I. Voit
    • 1
  • S. A. Sarin
    • 1
  • E. É. Dmitrieva
    • 1
  1. 1.Institute of Chemistry, Far-East Branch, Russian Academy of SciencesVladivostokRussia

Personalised recommendations