Journal of Applied Spectroscopy

, Volume 81, Issue 6, pp 912–918 | Cite as

Phase Equilibria and Ionic Solvation in the Lithium Tetrafluoroborate–Dimethylsulfoxide System

  • M. M. Gafurov
  • S. A. Kirillov
  • M. I. Gorobets
  • K. Sh. Rabadanov
  • M. B. Ataev
  • D. O. Tretyakov
  • K. M. Aydemirov

The phase diagram and electrical conductivity isotherms for the lithium tetrafluoroborate (LiBF4)–dimethylsulfoxide (DMSO) system and Raman spectra of DMSO and the LiBF4–DMSO solution were studied. Spectroscopic signatures of a H-bond between DMSO and BF4 ions were found. The bonds of Li+ ions to the solvent were stronger than the bonds in DMSO dimers because formation of the solvate destroyed dimeric DMSO molecules. The τω values for DMSO molecules in the Li+-ion solvate shell of the LiBF4–DMSO system were similar to those for associated solvent molecules.


DMSO LiBF4 Raman spectra phase diagram vibrational dephasing 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    K. P. Mishchenko and G. M. Poltoratskii, Thermodynamics and Structure of Aqueous and Non-Aqueous Electrolyte Solutions [in Russian], Khimiya, Leningrad (1976).Google Scholar
  2. 2.
    N. A. Izmailov, Electrochemistry of Solutions [in Russian], Khimiya, Moscow (1966).Google Scholar
  3. 3.
    K. Xu, Chem. Rev., 104, 4304–4418 (2004).CrossRefGoogle Scholar
  4. 4.
    D. Martin, A. Weise, and H.-J. Niclas, Angew. Chem., Int. Ed., 6, 318–334 (1967).CrossRefGoogle Scholar
  5. 5.
    I. S. Perelygin, in: Ionic Solvation, G. A. Krestov (Ed.), Ellis Horwood, Chichester (1994), pp. 100–207.Google Scholar
  6. 6.
    J. M. Alia, in: Handbook of Raman Spectroscopy, I. R. Lewis and H. G. M. Edwards (Eds.), Marcel Dekker, New York (2001), pp. 617–683.Google Scholar
  7. 7.
    M. T. Forel and M. Tranquil, Spectrochim. Acta, Part A, 26, No. 8, 1023–1034 (1970).ADSCrossRefGoogle Scholar
  8. 8.
    I. S. Perelygin, A. S. Krauze, and I. G. Itkulov, Zh. Prikl. Spektrosk., 52, No. 3, 414–419 (1990).Google Scholar
  9. 9.
    I. S. Perelygin, I. G. Itkulov, and A. S. Krauze, Zh. Fiz. Khim., 65, 410–413 (1991).Google Scholar
  10. 10.
    W. R. Fawcett and A. A. Kloss, J. Chem. Soc. Faraday Trans., 92, 3333–3337 (1996).CrossRefGoogle Scholar
  11. 11.
    G. Fini and P. Mirone, Spectrochim. Acta, Part A, 32, 625–629 (1976).ADSCrossRefGoogle Scholar
  12. 12.
    C. Czeslik, Y. J. Kim, and J. Jonas, J. Chem. Phys., 111, 9739–9742 (1999).ADSCrossRefGoogle Scholar
  13. 13.
    M. Paolantoni, M. E. Gallina, and P. Sassi, J. Chem. Phys., 130, 164501–164509 (2009).ADSCrossRefGoogle Scholar
  14. 14.
    Z. Lu, E. Manias, and D. D. Macdonald, J. Phys. Chem. A, 113, 12207–12214 (2009).CrossRefGoogle Scholar
  15. 15.
    T. Shikata and N. Sugimoto, Phys. Chem. Chem. Phys., 13, 16542–16547 (2011).CrossRefGoogle Scholar
  16. 16.
    R. H. Figueroa, E. Roig, and H. H. Szmant, Spectrochim. Acta, 22, 587–592 (1966).ADSCrossRefGoogle Scholar
  17. 17.
    T. Shikata and N. Sugimoto, J. Phys. Chem. A, 116, 990–999 (2012).CrossRefGoogle Scholar
  18. 18.
    X. Xuan, J. Wang, and Y. Zhao, J. Raman Spectrosc., 38, 865–872 (2007).ADSCrossRefGoogle Scholar
  19. 19.
    D. O. Tretyakov, V. D. Prisiazhnyi, M. M. Gafurov, K. Sh. Rabadanov, and S. A. Kirillov, J. Chem. Eng. Data, 55, 1958–1964 (2010).CrossRefGoogle Scholar
  20. 20.
    M. M. Gafurov, K. Sh. Rabadanov, V. D. Prisyazhnyi, D. O. Tret′yakov, M. I. Gorobets, S. A. Kirillov, M. B. Ataev, and M. M. Kakagasanov, Zh. Fiz. Khim., 85, No. 9, 1615–1619 (2011).Google Scholar
  21. 21.
    M. M. Gafurov, K. Sh. Rabadanov, M. B. Ataev, A. R. Aliev, I. R. Akhmedov, M. G. Kakagasanov, and S. P. Kramynin, Zh. Prikl. Spektrosk., 79, No. 2, 200–205 (2012).Google Scholar
  22. 22.
    W. G. Rothschild, Dynamics of Molecular Liquids, Wiley, New York (1984).Google Scholar
  23. 23.
    C. H. Wang, Spectroscopy of Condensed Media. Dynamics of Molecular Interactions, Academic, Orlando (1985).Google Scholar
  24. 24.
    D. W. Oxtoby, Adv. Chem. Phys., 40, 1–48 (1979).Google Scholar
  25. 25.
    R. A. Kubo, Fluctuations, Relaxation and Resonance in Magnetic Systems, G. ter Haar (Ed.), Scottish Universities′ Summer School 1961, Oliver and Boyd, Edinburgh (1962), pp. 23–68.Google Scholar
  26. 26.
    S. A. Kirillov, Chem. Phys. Lett., 303, 37–42 (1999).ADSCrossRefGoogle Scholar
  27. 27.
    S. A. Kirillov, Pure Appl. Chem., 76, 171–181 (2004).CrossRefGoogle Scholar
  28. 28.
    S. A. Kirillov, in: Novel Approaches to the Structure and Dynamics of Liquids: Experiments, Theories and Simulations, NATO ASI Series, J. Samois and V. Durov (Eds.), Kluwer, Dordrecht (2004), pp. 193–227.CrossRefGoogle Scholar
  29. 29.
    G. M. Photiadis and G. N. Papatheodorou, J. Chem. Soc. Dalton Trans., 6, 981–990 (1998).CrossRefGoogle Scholar
  30. 30.
    S. A. Kirillov, A. Morresi, and M. Paolantoni, J. Phys. Org. Chem., 20, 568–573 (2007).CrossRefGoogle Scholar
  31. 31.
    S. A. Kirillov, M. I. Gorobets, M. M. Gafurov, K. Sh. Rabadanov, and M. B. Ataev, Zh. Fiz. Khim., 88, No. 1, 140–142 (2014).Google Scholar
  32. 32.
    H. Siebert, Anwendungen der Schwingungsspectroscopie in der anorganischen Chemie, Springer, Berlin (1966).CrossRefGoogle Scholar
  33. 33.
    S. A. Kirillov, M. I. Gorobets, M. M. Gafurov, M. B. Ataev, and K. Sh. Rabadanov, J. Phys. Chem. B, 117, 9439–9448 (2013).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • M. M. Gafurov
    • 1
  • S. A. Kirillov
    • 2
    • 3
  • M. I. Gorobets
    • 2
  • K. Sh. Rabadanov
    • 1
  • M. B. Ataev
    • 1
  • D. O. Tretyakov
    • 2
  • K. M. Aydemirov
    • 4
  1. 1.Analytical Center for Collective Use, Dagestan Scientifi c CenterRussian Academy of SciencesMakhachkalaRussia
  2. 2.Inter-Agency Department of Electrochemical Energy SystemsNational Academy of Sciences of UkraineKievUkrain
  3. 3.Institute of Sorption and Endoecological ProblemsNational Academy of Sciences of UkraineKievUkrain
  4. 4.Dagestan State UniversityMakhachkalaRussia

Personalised recommendations