Journal of Applied Spectroscopy

, Volume 81, Issue 5, pp 725–749 | Cite as

Standoff Detection of Hidden Explosives and Cold and Fire Arms by Terahertz Time-Domain Spectroscopy and Active Spectral Imaging (Review)


Terahertz time-domain spectroscopy and standoff spectral imaging for detection of explosives and cold and fire arms hidden, for example, under clothing, were reviewed. Special attention was paid to different schemes for practical implementation of these methods. Progress in this direction and existing problems and the prospects for their solution were discussed. Issues related to sources and receivers of terahertz radiation were briefly discussed. It was noted that interest in quantum-cascade lasers as compact sources of terahertz radiation and the potential of using them at room temperature were increasing.


terahertz time-domain spectroscopy active spectral imaging explosives standoff detection quantumcascade laser 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    L. A. Skvortsov and E. M. Maksimov, Kvantovaya Elektron. (Moscow), 40, 565–575 (2010).Google Scholar
  2. 2.
    L. A. Skvortsov, Kvantovaya Elektron. (Moscow), 41, 1051–1060 (2011).Google Scholar
  3. 3.
    L. A. Skvortsov, Kvantovaya Elektron. (Moscow), 42, 1–11 (2012).Google Scholar
  4. 4.
    V. Karasik, V. Ryzhii, I. Fokina, and L. Chlenova, Vestn. Mosk. Gos. Tekh. Univ. im. N. E. Baumana. Priborostroenie, Spets. Vyp., No. 9, 5–19 (2012).Google Scholar
  5. 5.
    M. Kemp, Proc. SPIE Int. Soc. Opt. Eng., 6402, 64020D-1–19 (2006).ADSGoogle Scholar
  6. 6.
    V. G. Bespalov, in: Problems in Coherent and Non-linear Optics [in Russian], I. P. Gurov and S. A. Kozlov (Eds.), SPBGU ITMO, St. Petersburg (2006), pp. 63–66.Google Scholar
  7. 7.
    B. Liu, H. Zhong, N. Karpovicz, Y. Chen, and X.-C. Zhang, Proc. IEEE, 95, 1514–1527 (2007).Google Scholar
  8. 8.
    Terahertz (THz) Imaging. AFRL-SN-RS-TR-2006-69, In-House Interim Report, Rome, New York (2006).Google Scholar
  9. 9.
    V. L. Bratman, A. G. Litvak, and E. V. Suvorov, Usp. Fiz. Nauk, 181, 867–874 (2011).Google Scholar
  10. 10.
    B. N. Zvonkov, A. A. Biryukov, S. M. Nekorkin, V. Ya. Aleshkin, V. I. Gavrilenko, A. A. Dubinov, K. V. Marem′yanov, and S. V. Morozov, Fiz. Tekh. Poluprovodn., 43, No. 2, 220–223 (2009).Google Scholar
  11. 11.
    A. Davies, A. Burnett, W. Fan, E. Linfield, and J. Cunningham, Mater. Today, 11, 18–26 (2008).Google Scholar
  12. 12.
    S. L. Dexheimer (ed.), Terahertz Spectroscopy: Principles and Applications, CRC Press, Taylor and Francis Group, (2008).Google Scholar
  13. 13.
    M. Nazarov and A. Shkurinov, Izv. Vyssh. Uchebn. Zaved., Radiofiz., 52, No. 7, 576–582 (2009).ADSGoogle Scholar
  14. 14.
    K. B. Mikitchuk and A. A. Afonenko, Fiz. Tekh. Poluprovodn., 46, No. 1, 121–124 (2012).Google Scholar
  15. 15.
    M. Tonouchi, Nat. Photonics, 1, 97–105 (2007).ADSGoogle Scholar
  16. 16.
    Z. Bielecki, J. Janucki, A. Kawalec, J. Mikolajczyk, N. Palka, M. Pasternak, T. Pustelny, T. Stacewicz, and J. Wojtas, Metrol. Meas. Syst., XIX, 3–28 (2012).Google Scholar
  17. 17.
    C. Schmuttenmaer, Chem. Rev., 104, 1759–1779 (2004).Google Scholar
  18. 18.
  19. 19.
    X.-C. Zhang and J. Xu, Introduction to THz Wave Photonics, Springer-Science + Business Media, LLC (2010).Google Scholar
  20. 20.
    T. Kubis, C. Yeh, P. Vogl, A. Benz, G. Fasching, and C. Deutsch, Phys. Rev. B: Condens. Matter Mater. Phys., 79, 195323-10 (2009).ADSGoogle Scholar
  21. 21.
    A. Tuchak, G. Gol’tsman, G. Kitaeva, A. Penin, S. Seliverstov, M. Finkel’, A. Shepelev, and P. Yakunin, Pis’ma Zh. Eksp. Teor. Fiz., 96, 97–101 (2012).Google Scholar
  22. 22.
    M. Walther, B. Fischer, A. Ortner, A. Bitzer, A. Thoman, and H. Helm, Anal. Bioanal. Chem., 397, 1009–1017 (2010).Google Scholar
  23. 23.
    B. N. Behnken, G. Karunasiri, D. R. Chamberlin, P. R. Robrish, and J. Faist, Opt. Lett., 33, 440–442 (2008).ADSGoogle Scholar
  24. 24.
    K. Linden and W. Neal, in: Proc. 34th Appl. Imagery Recognition Workshop, IEEE Computer Society, Washington, D.C. (2005), pp. 7–14.Google Scholar
  25. 25.
    C. Walther, G. Scalari, J. Faist, H. Beere, and D. Ritchie, Appl. Phys. Lett., 89, 231121-3 (2006).ADSGoogle Scholar
  26. 26.
    C. Walther, M. Fisher, G. Scalari, R. Terazzi, N. Hoyler, and J. Faist, Appl. Phys. Lett., 91, 131122-1 (2007).ADSGoogle Scholar
  27. 27.
    B. Williams, Nat. Photonics, 1, 517–525 (2007).ADSGoogle Scholar
  28. 28.
    D. Allis, D. Prokhorova, and T. Korter, J. Phys. Chem., 110, 1951–1959 (2006).Google Scholar
  29. 29.
    D. Allis, J. Zeitler, P. Taday, and T. Korter, Chem. Phys. Lett., 463, 84–89 (2008).ADSGoogle Scholar
  30. 30.
    B. Ferguson and X.-C. Zhang, Nat. Mater., 1, 26–33 (2002).ADSGoogle Scholar
  31. 31.
    D. Allis and T. Korter, Int. J. High Speed Electron. Syst., 17, 193–212 (2007).Google Scholar
  32. 32.
    Q. Chow, C. Zhang, K. Mu, B. Jin, L. Zhang, W. Li, and R. Feng, Appl. Phys., 92, 101106-3 (2008).Google Scholar
  33. 33.
    M. Leahy-Hoppa, M. Fitch, and R. Osiander, Anal. Bioanal. Chem., 395, 247–257 (2009).Google Scholar
  34. 34.
    A. Burnett, W. Fan, P. Upadhya, J. Cunningham, H. Edwards, M. Hargreaves, E. Linfield, and G. Davies, Proc. SPIE Int. Soc. Opt. Eng., 6402, 64020B-7-12 (2006).Google Scholar
  35. 35.
    J. Melinger, N. Laman, and D. Grischkowsky, Appl. Phys. Lett., 93, 011102-3 (2008).ADSGoogle Scholar
  36. 36.
    Y. Hu, P. Huang, L. Guoa, X. Wang, and C. Zhang, Phys. Lett. A, 359, 728–732 (2006).ADSGoogle Scholar
  37. 37.
    M. Kemp, P. Taday, B. Cole, J. Cluff, A. Fitzgerald, and W. Tribe, Proc. SPIE Int. Soc. Opt. Eng., 5070, 44–52 (2003).ADSGoogle Scholar
  38. 38.
    Y. Chen, H. Liu, Y. Deng, D. Schauki, M. Fitch, R. Osiander, C. Dodson, J. Spicer, M. Shur, and X.-C. Zhang, Chem. Phys. Lett., 400, 357–361 (2004).ADSGoogle Scholar
  39. 39.
    A. Shabaev, S. Lambrakos, N. Bernstein, V. Jacobs, and D. Finkenstadt, Appl. Spectrosc., 65, No. 4, 409–416 (2011).ADSGoogle Scholar
  40. 40.
    J. Chen, Y. Chen, H. Zhao, G. Bastiaans, and X.-C. Zhang, Opt. Express, 15, 12060–12067 (2007).ADSGoogle Scholar
  41. 41.
    Y. Chen, H. Liu, M. Fitch, R. Osiander, J. Spicer, M. Shur, and X.-C. Zhang, Proc. SPIE Int. Soc. Opt. Eng., 5799, 19–24 (2005).Google Scholar
  42. 42.
    M. Fitch, M. Leahy-Hoppa, E. Ott, and R. Osiander, Chem. Phys. Lett., 443, 284–288 (2007).ADSGoogle Scholar
  43. 43.
    Y. C. Shen, P. C. Upadhya, E. H. Linfield, H. E. Beer, and A. G. Davies, Appl. Phys. Lett., 83, 3117–3119 (2003).ADSGoogle Scholar
  44. 44.
    D. Petkie, F. De Lucia, C. Casto, P. Helminger, E. Jacobs, S. Moyer, S. Murrill, C. Halford, S. Griffin, and C. Franck, Proc. SPIE Int. Soc. Opt. Eng., 5989, 598918-8 (2005).Google Scholar
  45. 45.
    A. Gatesman, A. Danylov, T. Goyette, J. Dickinson, R. Giles, W. Goodhue, W. Waldman, W. Nixon, and W. Hoen, Proc. SPIE Int. Soc. Opt. Eng., 6212, 62120E1-13 (2006).Google Scholar
  46. 46.
    H. Kazianka, R. Leitner, and J. Pilz, Segmentation and Classifi cation of Hyper-Spectral Skin Data, University of Klagenfurt, Institute of Statistics, Klagenfurt, Austria, CTR Carinthian Tech. Research AG, 9524 Villach, Austria (2008), pp. 245–252.Google Scholar
  47. 47.
    T. Yuan, H. Liu, J. Xu, F. Al-Douseri, Y. Hu, and X. Zhang, Proc. SPIE Int. Soc. Opt. Eng., 5070, 28–37 (2003).ADSGoogle Scholar
  48. 48.
    J. T. Kindt and C. A. Schmuttenmaer, J. Phys. Chem., 100, 10373–10379 (1996).Google Scholar
  49. 49.
    I. Morino, K. M. T. Yamada, and A. G. Maki, J. Mol. Spectrosc., 196, 131–138 (1999).ADSGoogle Scholar
  50. 50.
    R. D. Averitt, G. Rodriguez, J. L. W. Siders, S. A. Trugman, and A. J. Taylor, J. Opt. Soc. Am. B: Opt. Phys., 17, 327–331 (2000).ADSGoogle Scholar
  51. 51.
    Y. Ding and I. Zotova, Opt. Quantum Electron., 32, 531–552 (2000).Google Scholar
  52. 52.
    A. Rice, Y. Jin, X. F. Ma, X.-C. Zhang, et al., Appl. Phys. Lett., 64, 1324–1326 (1994).ADSGoogle Scholar
  53. 53.
    A. Stepanov, L. Bonacina, S. Chekalin, and J.-P. Wolf, Opt. Lett., 33, No. 21, 2497–2499 (2008).ADSGoogle Scholar
  54. 54.
    B. Greene, P. Saeta, R. Douglas, and S. Chuang, IEEE J. Quantum Electron., 28, 2302–2312 (1992).ADSGoogle Scholar
  55. 55.
    A. Nahata, A. Weling, and T. Heinz, Appl. Phys. Lett., 69, 2321–2323 (1996).ADSGoogle Scholar
  56. 56.
    T. Loffler, T. Hahn, M. Thomson, F. Jacob, and H. Roskos, Opt. Express, 13, 5353–5362 (2005).ADSGoogle Scholar
  57. 57.
    K. Liu, J. Xu, and X.-C. Zhang, Appl. Phys. Lett., 85, 863–865 (2004).ADSGoogle Scholar
  58. 58.
    W. Shi, Y. Ding, N. Fernelius, and K. Vodopyanov, Opt. Lett., 27, 1454–1456 (2002).ADSGoogle Scholar
  59. 59.
    J. Herbling, A. Stepanov, G. Almasi, B. Bartal, and J. Kuhl, Appl. Phys. B: Lasers Opt., 78, 593–597 (2006).ADSGoogle Scholar
  60. 60.
    J. Gao, J. Hovenier, Z. Yang, J. Baselmans, A. Baryshev, M. Hajenius, T. Klapwijk, A. Adam, T. Klaassen, B. Williams, S. Kumar, and Q. Hu, Appl. Phys. Lett., 86, 244104-5 (2005).ADSGoogle Scholar
  61. 61.
    S. Barbieri, J. Alton, C. Baker, T. Lo, H. Beere, and D. Ritchie, Opt. Express, 13, 6497–6503 (2005).ADSGoogle Scholar
  62. 62.
    B. S. Karasik and R. Cantor, Appl. Phys. Lett., 98, 193503-3 (2011).ADSGoogle Scholar
  63. 63.
    M. Rochat, L. Ajili, H. Willenberg, J. Faist, H. Beere, G. Davies, E. Linfield, and D. Ritchie, Appl. Phys. Lett., 81, 1381–1383 (2002).ADSGoogle Scholar
  64. 64.
    R. Kohler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, D. A. Ritchie, R. C. Iotti, and F. Rossi, Nature, 417, 156–159 (2002).ADSGoogle Scholar
  65. 65.
    B. Williams, S. Kumar, Q. Hu, and J. Reno, Opt. Express, 13, 3331–3339 (2005).ADSGoogle Scholar
  66. 66.
    L. Li, L. Chen, J. Zhu, J. Freeman, P. Dean, A. Valavanis, A. G. Davies, and E. Linfield, Electron. Lett., 50, 309–311 (2014).Google Scholar
  67. 67.
    M. Belkin, Q. Wang, C. Pflugl, A. Belyanin, S. Khanna, A. Davies, E. Linfield, and F. Capasso, IEEE J. Sel. Top. Quantum Electron., 15, 952–967 (2009).Google Scholar
  68. 68.
    K. Vijayraghavan, Y. Jiang, M. Jang, A. Jiang, K. Choutaquanta, A. Vizbaras, F. Demmerle, G. Boehm, M. C. Amann, and M. A. Belkin, Nat. Commun., 4, 1–7 (2013).Google Scholar
  69. 69.
    O. Y. Lu, N. Bandyopadhyay, S. Slivken, Y. Bai, and M. Razeghi, Opt. Express, 21, No. 1, 968–973 (2013).ADSGoogle Scholar
  70. 70.
    O. Y. Lu, N. Bandyopadhyay, S. Slivken, Y. Bai, and M. Razeghi, Appl. Phys. Lett., 101, No. 25, 251121-3 (2012).ADSGoogle Scholar
  71. 71.
    K. Vijayraghavan, R. W. Adams, A. Vizbaras, M. Jang, C. Grasse, G. Boehm, M. C. Amann, and M. A. Belkin, Appl. Phys. Lett., 100, No. 25, 251104-4 (2012).ADSGoogle Scholar
  72. 72.
    Q. Y. Lu, N. Bandyopadhyay, S. Slivken, Y. Bai, and M. Razeghi, Appl. Phys. Lett., 103, 011101-3 (2013).ADSGoogle Scholar
  73. 73.
    E. Dupont, S. Fathololoumi, Z. R. Wasilewski, G. Aers, S. R. Laframboise, M. Lindskog, S. G. Razavipour, A. Wacker, D. Ban, and H. C. Liu, J. Appl. Phys., 111, No. 7, 073111-1–10 (2012).Google Scholar
  74. 74.
    P. Dean, Y. L. Lim, A. Valavanis, R. Kliese, M. Nikolic, S. P. Khanna, M. Lachab, D. Indjin, Z. Ikonic, P. Harrison, A. D. Rakic, E. H. Linfield, and A. G. Davies, Opt. Lett., 36, No. 13, 2587–2589 (2011).ADSGoogle Scholar
  75. 75.
    B. Williams, S. Kumar, Q. Hu, and J. Reno, Electron. Lett., 42, 89–90 (2006).Google Scholar
  76. 76.
    H.-W. Hubers, S. Pavlov, A. Semenov, R. Kohler, L. Mahler, A. Tredicucci, H. Beere, D. Ritchie, and E. Linfield, Opt. Express, 13, 5890–5896 (2005).ADSGoogle Scholar
  77. 77.
    S. Kumar, Q. Hu, and J. Reno, Appl. Phys. Lett., 94, 131105-3 (2009).ADSGoogle Scholar
  78. 78.
    A. Lee and Q. Hu, Opt. Lett., 30, 2563–2565 (2005).ADSGoogle Scholar
  79. 79.
    M. Belkin, J. Fan, S. Hormoz, F. Capasso, S. Khanna, M. Lachab, A. Davies, and E. Linfield, Opt. Express, 16, 3242–3248 (2008).ADSGoogle Scholar
  80. 80.
    M. Belkin, F. Capasso, F. Belyanin, M. Fischer, A. Wittmann, and J. Faist, Appl. Phys. Lett., 92, 201101-2 (2008).ADSGoogle Scholar
  81. 81.
    M. Amanti, M. Fischer, G. Scalari, M. Beck, and J. Faist, Nat. Photonics, 3, 586–590 (2009).ADSGoogle Scholar
  82. 82.
    S. Kumar, C. Chan, Q. Hu, and J. Reno, Nat. Phys., 7, 166–171 (2011).Google Scholar
  83. 83.
    S. Fathololoumi, E. Dupont, C. Chan, Z. Wasilewski, S. Laframboise, D. Ban, A. Matyas, C. Jirauschek, Q. Hu, and H. Liu, Opt. Express, 20, 3866–3876 (2012).ADSGoogle Scholar
  84. 84.
    H. Richter, M. Greiner-Bar, S. Pavlov, A. Semenov, M. Wienold, L. Schrottke, M. Giehler, R. Hey, H. Grahn, and H.-W. Hubers, Opt. Express, 18, 10177–10187 (2010).ADSGoogle Scholar
  85. 85.
    S. Barbieri, P. Gellie, G. Santarelli, L. Ding, W. Maineult, C. Sirtori, R. Colombelli, H. Beere, and D. Ritchie, Nat. Photonics, 4, 636–640 (2010).ADSGoogle Scholar
  86. 86.
    P. Khosropanah, A. Baryshev, W. Zhang, W. Jellema, J. Hovenier, J. Gao, T. Klapwijk, D. Paveliev, B. Williams, S. Kumar, Q. Hu, J. Reno, B. Klein, and J. Hesler, Opt. Lett., 34, 2958–2960 (2009).ADSGoogle Scholar
  87. 87.
    S. Kumar, IEEE J. Sel. Top. Quantum Electron., 17, 38–47 (2011).MATHGoogle Scholar
  88. 88.
    A. Semenov, L. Mahler, A. Tredicucci, H. Beere, D. Ritchie, and H.-W. Hubers, Appl. Phys. Lett., 96, 071112-3 (2010).ADSGoogle Scholar
  89. 89.
    S. Kumar, B. Williams, Q. Qin, A. Lee, Q. Hu, and J. Reno, Opt. Express, 15, 113–128 (2007).ADSGoogle Scholar
  90. 90.
    A. Lee, B. Williams, S. Kumar, Q. Hu, and J. Reno, Opt. Lett., 35, 910–912 (2010).ADSGoogle Scholar
  91. 91.
    C. Pflugl, M. Belkin, Q. Wang, M. Geiser, A. Belyanin, M. Fischer, A. Wittmann, J. Faist, and F. Capasso, Appl. Phys. Lett., 93, 161110-3 (2008).ADSGoogle Scholar
  92. 92.
    T. Bartel, P. Gaal, K. Reimann, M. Woerner, and T. Elsaesser, Opt. Lett., 30, 2805–2807 (2005).ADSGoogle Scholar
  93. 93.
    J. Dai, X. Guo, and X.-C. Zhang, Technologies for Homeland and Security, HST’09 IEEE, Conference, Boston (2009), pp. 453–456.Google Scholar
  94. 94.
    J. Dai, X. Lu, J. Liu, I. Ho, N. Karpowicz, and X.-C. Zhang, Terahertz Sci. Technol., 2, 131–143 (2009).Google Scholar
  95. 95.
    T.-J. Wang, S. Yuan, Y. Chen, J.-F. Daigle, C. Marceau, F. Theberge, M. Chateauneuf, J. Dubois, and S. Chin, Appl. Phys. Lett., 97, 111108-3 (2010).ADSGoogle Scholar
  96. 96.
    Y. Zhang, Y. Chen, C. Marceau, W. Liu, Z.-D. Sun, S. Xu, F. Theberge, M. Chateauneuf, J. Dubois, and S. Chin, Opt. Express, 16, 15483–15488 (2008).ADSGoogle Scholar
  97. 97.
    S. Xu, Y. Zhang, Y. Zheng, and W. Liu, Terahertz Sci. Technol., 3, 130–142 (2010).Google Scholar
  98. 98.
    W. Withayachumnankul, G. M. Png, X. X. Yin, S. Atakaramians, I. Jones, H. Lin, B. Ung, J. Balakrishnan, B. W.-H. Ng, B. Ferguson, S. P. Mickan, B. M. Fischer, and D. Abbott, Proc. IEEE, 95, No. 8, 1528–1558 (2007).Google Scholar
  99. 99.
    J. Dai, X. Xie, and X.-C. Zhang, Phys. Rev. Lett., 97, 103903-4 (2006).ADSGoogle Scholar
  100. 100.
    M. C. Nuss and J. Orenstein, in: Topics in Applied Physics, Vol. 74, Millimeter and Submillimeter Wave Spectroscopy of Solids, Springer-Verlag, Berlin, Heidelberg (1998), pp. 7–50.Google Scholar
  101. 101.
    R. Smith and M. Arnold, Appl. Spectrosc. Rev., 46, 636–679 (2011).ADSGoogle Scholar
  102. 102.
    S. Nishizawa, K. Sakai, N. Hangyo, T. Nagashima, M. W. Takeda, K. Tominaga, A. Oka, K. Tanaka, and O. Morikawa, in: Topics in Applied Physics, Vol. 97, Terahertz Optoelectronics, K. Sakai (Ed.), Springer-Verlag, Berlin, Heidelberg (2005), pp. 203–270.Google Scholar
  103. 103.
    G. Kitaeva, Laser Phys. Lett., 5, 561–564 (2008).ADSGoogle Scholar
  104. 104.
    M. Naftaly and R. Dudley, Opt. Lett., 34, 1213–1215 (2009).ADSGoogle Scholar
  105. 105. [Online; Accessed Jun. 30, 2012].
  106. 106.
    S. Vidal, J. Degert, M. Tondusson, J. Oberle, and E. Freysz, Appl. Phys. Lett., 98, 191103-3 (2011).ADSGoogle Scholar
  107. 107.
    X. Wang, Y. Cui, W. Sun, J. Ye, and Y. Zhang, J. Opt. Soc. Am. A, 27, 2387–2393 (2010).ADSGoogle Scholar
  108. 108.
    A. Jameson, "Generating and Using Terahertz Radiation to Explore Carrier Dynamics of Semiconductor and Metal Nanostructures," Ph.D. Thesis, Oregon St. Univ. (2012).Google Scholar
  109. 109.
    P. Jepsen and B. Fischer, Opt. Lett., 30, 29–31 (2005).ADSGoogle Scholar
  110. 110.
    N. Karpowicz, D. Jianming, L. Xiaofei, Y. Chen, M. Yamaguchi, H. Zhao, X.-C. Zhang, M. Price-Gallagher, C. Fletcher, O. Mamer, A. Lesimple, and K. Johnson, Appl. Phys. Lett., 92, 011131-3 (2008).ADSGoogle Scholar
  111. 111.
    K. Yamamoto, M. Yamaguchi, F. Miyamaru, M. Tani, M. Hangyo, T. Ikeda, A. Matsushita, K. Koide, M. Tatsuno, and Y. Minami, Jpn. J. Appl. Phys., 43, 414–417 (2004).ADSGoogle Scholar
  112. 112.
    J. Barber, D. E. Hooks, D. J. Funk, R. D. Averitt, A. J. Taylor, and D. Babikov, J. Phys. Chem. A, 109, 3501–3505 (2005).Google Scholar
  113. 113.
    N. Palka, T. Trzcinski, and M. Szustakowski, Acta Phys. Pol., A, 122, No. 5, 946–949 (2012).Google Scholar
  114. 114.
    M. Leahy-Hoppa, M. Fitch, X. Zheng, L. Hayden, and R. Osiander, Chem. Phys. Lett., 434, 227–230 (2007).ADSGoogle Scholar
  115. 115.
    M. Hangyo, M. Tani, and T. Nagashima, J. Infrared, Millimeter, Terahertz Waves, 26, 1661–1690 (2005).ADSGoogle Scholar
  116. 116.
    H.-T. Chen, W. J. Padilla, J. M. O. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, Nature, 444, 597–600 (2006).ADSGoogle Scholar
  117. 117.
    M. M. Nazarov, A. A. Angeluts, D. A. Sapozhnikov, and A. P. Shkurinov, Izv. Vyssh. Uchebn. Zaved., Radiofiz., 52, No. 8, 595–606 (2009).Google Scholar
  118. 118.
    J. Baxter and G. Guglietta, Anal. Chem., 83, No. 12, 4342–4368 (2011).Google Scholar
  119. 119.
    M. Scheller and M. Koch, Opt. Express, 17, 17723–17733 (2009).ADSGoogle Scholar
  120. 120.
    N. Krumbholz, C. Jansen, M. Scheller, T. Muller-Wirts, S. Lubbecke, R. Holzwarth, R. Scheunemann, R. Wilk, B. Sartorius, H. Roehle, D. Stanze, J. Beckmann, L. S. von Chrzanowski, U. Ewert, and M. Koch, Proc. SPIE Int. Soc. Opt. Eng., 7485, 7485-04 (2009).ADSGoogle Scholar
  121. 121.
    W. Tribe, D. Newnham, P. Taday, and M. Kemp, Proc. SPIE Int. Soc. Opt. Eng., 5354, 168–176 (2004).ADSGoogle Scholar
  122. 122.
    P. Benicewicz, J. Roberts, and A. Taylor, J. Opt. Soc. Am., 12, 2533–2546 (1994).Google Scholar
  123. 123.
    N. Sarukura, H. Ohtake, S. Izumida, and Z. Liu, J. Appl. Phys., 84, 654–666 (1998).ADSGoogle Scholar
  124. 124.
    M. Li and X. Zhang, Proc. SPIE Int. Soc. Opt. Eng., 3616, 126–135 (1999).ADSGoogle Scholar
  125. 125.
    A. Gurtler, C. Winnewisser, H. Helm, and P. Jepsen, J. Opt. Soc. Am., 1, 74–83 (2000).Google Scholar
  126. 126.
    S. Izumida, S. Ono, Z. Liu, H. Ohatake, and N. Sarukura, Appl. Phys. Lett., 75, 451–453 (1999).ADSGoogle Scholar
  127. 127.
    T. Kondo, M. Sakamoto, M. Tonouchi, and M. Hangyo, Jpn. J. Appl. Phys., 38, L1035–L1037 (1999).ADSGoogle Scholar
  128. 128.
    M. Kemp, A. Glauser, and C. Baker, Proc. SPIE Int. Soc. Opt. Eng., 6212, 62120T-6 (2006).ADSGoogle Scholar
  129. 129.
    Y. Shen, P. Taday, and M. Kemp, Proc. SPIE Int. Soc. Opt. Eng., 5619, 82–89 (2004).ADSGoogle Scholar
  130. 130.
    Y. Shen, P. Taday, D. Newnham, and H. Pepper, Semicond. Sci. Technol., 20, S254–S257 (2005).ADSGoogle Scholar
  131. 131.
    P. Jepsen, D. Cooke, and M. Koch, Laser Photonics Rev., 5, 124–166 (2011).Google Scholar
  132. 132.
    M. Kemp, Terahertz Sci. Technol., 1, 282–292 (2011).Google Scholar
  133. 133.
    V. Krozer, T. Loffer, J. Dall, A. Kusk, F. Eichan, R. Olsson, J. Buron, P. Jepsen, V. Zhurbenko, and T. Jensen, IEEE Trans. Microwave Theory Tech., 58, 2027–2039 (2010).ADSGoogle Scholar
  134. 134.
    F. Simoens, J. Meilham, B. Delplanque, S. Gidon, G. Lasfarques, J. Lalanue Dera, D. Nguyen, J. Ouvrier-Buffet, S. Pocas, T. Mailon, O. Cathhaband, and S. Barbieri, Proc. SPIE Int. Soc. Opt. Eng., 8363, 8363D-1–5 (2012).ADSGoogle Scholar
  135. 135.
    H. Zhong, A. Redo-Sanchez, and X.-C. Zhang, Opt. Express, 14, 9130–9141 (2006).ADSGoogle Scholar
  136. 136.
    Z. Zhang, Y. Zhang, G. Zhao, and C. Zhang, Optik, 118, 325–329 (2007).ADSGoogle Scholar
  137. 137.
    C. Konek, B. Mason, J. Hooper, C. Stoltz, and J. Wilkinson, Chem. Phys. Lett., 489, 48–53 (2010).ADSGoogle Scholar
  138. 138.
    H. Zhong, A. Redo-Sanchez, and X.-C. Zhang, Int. J. High Speed Electron. Syst., 17, 239–249 (2007).Google Scholar
  139. 139.
    Y. Watanabe, K. Kawase, and T. Ikari, Appl. Phys. Lett., 83, 800–802 (2003).ADSGoogle Scholar
  140. 140.
    Y. Watanabe, K. Kawase, T. Ikari, H. Ito, Y. Ishikawa, and H. Minamide, Opt. Commun., 234, 125–129 (2004).ADSGoogle Scholar
  141. 141.
    C. Baker, W. Tribe, T. Lo, B. Cole, S. Chandler, and M. Kemp, Proc. SPIE Int. Soc. Opt. Eng., 95, 1559–1565 (2007).Google Scholar
  142. 142.
    T. Lo, I. Gregory, C. Baker, P. Taday, W. Tribe, and M. Kemp, Vib. Spectrosc., 42, 243–248 (2006).Google Scholar
  143. 143.
    H.-B. Liu, Y. Chen, G. Bastiaans, and X.-C. Zhang, Opt. Express, 14, 415–423 (2006).ADSGoogle Scholar
  144. 144.
    H. Zhong, "Terahertz Wave Refl ective Sensing and Imaging," Doctoral dissertation, Rensselaer Polytechnic Inst. (2006).Google Scholar
  145. 145.
    Y. C. Shen, T. Lo, P. F. Taday, B. E. Cole, W. R. Tribe, and M. C. Kemp, Appl. Phys. Lett., 86, 241116-3 (2005).ADSGoogle Scholar
  146. 146.
    M. Brandstetter, C. Deutsch, M. Krall, H. Detz, D. C. MacFarland, T. Zederbauer, A. M. Andrews, W. Schrenk, G. Strasser, and K. Unterrainer, Appl. Phys. Lett., 103, 17113-5 (2013).Google Scholar
  147. 147.
    J. Federici, B. Schulkin, F. Huang, D. Gary, R. Barat, F. Oliveiraand, and D. Zimdars, Semicond. Sci. Technol., 20, S266–S280 (2005).ADSGoogle Scholar
  148. 148.
    A. W. M. Lee, Q. Qin, S. Kumar, B. S. Williams, Q. Hu, and J. L. Reno, Appl. Phys. Lett., 89, 141125-3 (2006).ADSGoogle Scholar
  149. 149.
    A. Lee, B. Williams, S. Kumar, Q. Hu, and J. Reno, IEEE Photonics Technol. Lett., 18, 1415–1417 (2006).ADSGoogle Scholar
  150. 150.
    Q. Hu, Terahertz Sci. Technol., 1, 1–10 (2008).Google Scholar
  151. 151.
    N. Oda, C. R. Phys., 11, 496–509 (2010).ADSGoogle Scholar
  152. 152.
    N. Oda, A. Lee, T. Ishi, I. Hosako, and Q. Hu, Proc. SPIE Int. Soc. Opt. Eng., 8363, 83630A-5 (2012).ADSGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.A. M. Prokhorov Academy of Engineering SciencesMoscowRussia

Personalised recommendations