Skip to main content
Log in

Standoff Detection of Hidden Explosives and Cold and Fire Arms by Terahertz Time-Domain Spectroscopy and Active Spectral Imaging (Review)

  • Published:
Journal of Applied Spectroscopy Aims and scope

Terahertz time-domain spectroscopy and standoff spectral imaging for detection of explosives and cold and fire arms hidden, for example, under clothing, were reviewed. Special attention was paid to different schemes for practical implementation of these methods. Progress in this direction and existing problems and the prospects for their solution were discussed. Issues related to sources and receivers of terahertz radiation were briefly discussed. It was noted that interest in quantum-cascade lasers as compact sources of terahertz radiation and the potential of using them at room temperature were increasing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. A. Skvortsov and E. M. Maksimov, Kvantovaya Elektron. (Moscow), 40, 565–575 (2010).

    Google Scholar 

  2. L. A. Skvortsov, Kvantovaya Elektron. (Moscow), 41, 1051–1060 (2011).

    Google Scholar 

  3. L. A. Skvortsov, Kvantovaya Elektron. (Moscow), 42, 1–11 (2012).

    Google Scholar 

  4. V. Karasik, V. Ryzhii, I. Fokina, and L. Chlenova, Vestn. Mosk. Gos. Tekh. Univ. im. N. E. Baumana. Priborostroenie, Spets. Vyp., No. 9, 5–19 (2012).

  5. M. Kemp, Proc. SPIE Int. Soc. Opt. Eng., 6402, 64020D-1–19 (2006).

    ADS  Google Scholar 

  6. V. G. Bespalov, in: Problems in Coherent and Non-linear Optics [in Russian], I. P. Gurov and S. A. Kozlov (Eds.), SPBGU ITMO, St. Petersburg (2006), pp. 63–66.

    Google Scholar 

  7. B. Liu, H. Zhong, N. Karpovicz, Y. Chen, and X.-C. Zhang, Proc. IEEE, 95, 1514–1527 (2007).

    Google Scholar 

  8. Terahertz (THz) Imaging. AFRL-SN-RS-TR-2006-69, In-House Interim Report, Rome, New York (2006).

  9. V. L. Bratman, A. G. Litvak, and E. V. Suvorov, Usp. Fiz. Nauk, 181, 867–874 (2011).

    Google Scholar 

  10. B. N. Zvonkov, A. A. Biryukov, S. M. Nekorkin, V. Ya. Aleshkin, V. I. Gavrilenko, A. A. Dubinov, K. V. Marem′yanov, and S. V. Morozov, Fiz. Tekh. Poluprovodn., 43, No. 2, 220–223 (2009).

    Google Scholar 

  11. A. Davies, A. Burnett, W. Fan, E. Linfield, and J. Cunningham, Mater. Today, 11, 18–26 (2008).

    Google Scholar 

  12. S. L. Dexheimer (ed.), Terahertz Spectroscopy: Principles and Applications, CRC Press, Taylor and Francis Group, (2008).

  13. M. Nazarov and A. Shkurinov, Izv. Vyssh. Uchebn. Zaved., Radiofiz., 52, No. 7, 576–582 (2009).

    ADS  Google Scholar 

  14. K. B. Mikitchuk and A. A. Afonenko, Fiz. Tekh. Poluprovodn., 46, No. 1, 121–124 (2012).

    Google Scholar 

  15. M. Tonouchi, Nat. Photonics, 1, 97–105 (2007).

    ADS  Google Scholar 

  16. Z. Bielecki, J. Janucki, A. Kawalec, J. Mikolajczyk, N. Palka, M. Pasternak, T. Pustelny, T. Stacewicz, and J. Wojtas, Metrol. Meas. Syst., XIX, 3–28 (2012).

    Google Scholar 

  17. C. Schmuttenmaer, Chem. Rev., 104, 1759–1779 (2004).

    Google Scholar 

  18. http://www.ispoptics.com/admuploads/file/highresistivitysioverview.pdf.

  19. X.-C. Zhang and J. Xu, Introduction to THz Wave Photonics, Springer-Science + Business Media, LLC (2010).

  20. T. Kubis, C. Yeh, P. Vogl, A. Benz, G. Fasching, and C. Deutsch, Phys. Rev. B: Condens. Matter Mater. Phys., 79, 195323-10 (2009).

    ADS  Google Scholar 

  21. A. Tuchak, G. Gol’tsman, G. Kitaeva, A. Penin, S. Seliverstov, M. Finkel’, A. Shepelev, and P. Yakunin, Pis’ma Zh. Eksp. Teor. Fiz., 96, 97–101 (2012).

    Google Scholar 

  22. M. Walther, B. Fischer, A. Ortner, A. Bitzer, A. Thoman, and H. Helm, Anal. Bioanal. Chem., 397, 1009–1017 (2010).

    Google Scholar 

  23. B. N. Behnken, G. Karunasiri, D. R. Chamberlin, P. R. Robrish, and J. Faist, Opt. Lett., 33, 440–442 (2008).

    ADS  Google Scholar 

  24. K. Linden and W. Neal, in: Proc. 34th Appl. Imagery Recognition Workshop, IEEE Computer Society, Washington, D.C. (2005), pp. 7–14.

  25. C. Walther, G. Scalari, J. Faist, H. Beere, and D. Ritchie, Appl. Phys. Lett., 89, 231121-3 (2006).

    ADS  Google Scholar 

  26. C. Walther, M. Fisher, G. Scalari, R. Terazzi, N. Hoyler, and J. Faist, Appl. Phys. Lett., 91, 131122-1 (2007).

    ADS  Google Scholar 

  27. B. Williams, Nat. Photonics, 1, 517–525 (2007).

    ADS  Google Scholar 

  28. D. Allis, D. Prokhorova, and T. Korter, J. Phys. Chem., 110, 1951–1959 (2006).

    Google Scholar 

  29. D. Allis, J. Zeitler, P. Taday, and T. Korter, Chem. Phys. Lett., 463, 84–89 (2008).

    ADS  Google Scholar 

  30. B. Ferguson and X.-C. Zhang, Nat. Mater., 1, 26–33 (2002).

    ADS  Google Scholar 

  31. D. Allis and T. Korter, Int. J. High Speed Electron. Syst., 17, 193–212 (2007).

    Google Scholar 

  32. Q. Chow, C. Zhang, K. Mu, B. Jin, L. Zhang, W. Li, and R. Feng, Appl. Phys., 92, 101106-3 (2008).

    Google Scholar 

  33. M. Leahy-Hoppa, M. Fitch, and R. Osiander, Anal. Bioanal. Chem., 395, 247–257 (2009).

    Google Scholar 

  34. A. Burnett, W. Fan, P. Upadhya, J. Cunningham, H. Edwards, M. Hargreaves, E. Linfield, and G. Davies, Proc. SPIE Int. Soc. Opt. Eng., 6402, 64020B-7-12 (2006).

    Google Scholar 

  35. J. Melinger, N. Laman, and D. Grischkowsky, Appl. Phys. Lett., 93, 011102-3 (2008).

    ADS  Google Scholar 

  36. Y. Hu, P. Huang, L. Guoa, X. Wang, and C. Zhang, Phys. Lett. A, 359, 728–732 (2006).

    ADS  Google Scholar 

  37. M. Kemp, P. Taday, B. Cole, J. Cluff, A. Fitzgerald, and W. Tribe, Proc. SPIE Int. Soc. Opt. Eng., 5070, 44–52 (2003).

    ADS  Google Scholar 

  38. Y. Chen, H. Liu, Y. Deng, D. Schauki, M. Fitch, R. Osiander, C. Dodson, J. Spicer, M. Shur, and X.-C. Zhang, Chem. Phys. Lett., 400, 357–361 (2004).

    ADS  Google Scholar 

  39. A. Shabaev, S. Lambrakos, N. Bernstein, V. Jacobs, and D. Finkenstadt, Appl. Spectrosc., 65, No. 4, 409–416 (2011).

    ADS  Google Scholar 

  40. J. Chen, Y. Chen, H. Zhao, G. Bastiaans, and X.-C. Zhang, Opt. Express, 15, 12060–12067 (2007).

    ADS  Google Scholar 

  41. Y. Chen, H. Liu, M. Fitch, R. Osiander, J. Spicer, M. Shur, and X.-C. Zhang, Proc. SPIE Int. Soc. Opt. Eng., 5799, 19–24 (2005).

    Google Scholar 

  42. M. Fitch, M. Leahy-Hoppa, E. Ott, and R. Osiander, Chem. Phys. Lett., 443, 284–288 (2007).

    ADS  Google Scholar 

  43. Y. C. Shen, P. C. Upadhya, E. H. Linfield, H. E. Beer, and A. G. Davies, Appl. Phys. Lett., 83, 3117–3119 (2003).

    ADS  Google Scholar 

  44. D. Petkie, F. De Lucia, C. Casto, P. Helminger, E. Jacobs, S. Moyer, S. Murrill, C. Halford, S. Griffin, and C. Franck, Proc. SPIE Int. Soc. Opt. Eng., 5989, 598918-8 (2005).

    Google Scholar 

  45. A. Gatesman, A. Danylov, T. Goyette, J. Dickinson, R. Giles, W. Goodhue, W. Waldman, W. Nixon, and W. Hoen, Proc. SPIE Int. Soc. Opt. Eng., 6212, 62120E1-13 (2006).

    Google Scholar 

  46. H. Kazianka, R. Leitner, and J. Pilz, Segmentation and Classifi cation of Hyper-Spectral Skin Data, University of Klagenfurt, Institute of Statistics, Klagenfurt, Austria, CTR Carinthian Tech. Research AG, 9524 Villach, Austria (2008), pp. 245–252.

  47. T. Yuan, H. Liu, J. Xu, F. Al-Douseri, Y. Hu, and X. Zhang, Proc. SPIE Int. Soc. Opt. Eng., 5070, 28–37 (2003).

    ADS  Google Scholar 

  48. J. T. Kindt and C. A. Schmuttenmaer, J. Phys. Chem., 100, 10373–10379 (1996).

    Google Scholar 

  49. I. Morino, K. M. T. Yamada, and A. G. Maki, J. Mol. Spectrosc., 196, 131–138 (1999).

    ADS  Google Scholar 

  50. R. D. Averitt, G. Rodriguez, J. L. W. Siders, S. A. Trugman, and A. J. Taylor, J. Opt. Soc. Am. B: Opt. Phys., 17, 327–331 (2000).

    ADS  Google Scholar 

  51. Y. Ding and I. Zotova, Opt. Quantum Electron., 32, 531–552 (2000).

    Google Scholar 

  52. A. Rice, Y. Jin, X. F. Ma, X.-C. Zhang, et al., Appl. Phys. Lett., 64, 1324–1326 (1994).

    ADS  Google Scholar 

  53. A. Stepanov, L. Bonacina, S. Chekalin, and J.-P. Wolf, Opt. Lett., 33, No. 21, 2497–2499 (2008).

    ADS  Google Scholar 

  54. B. Greene, P. Saeta, R. Douglas, and S. Chuang, IEEE J. Quantum Electron., 28, 2302–2312 (1992).

    ADS  Google Scholar 

  55. A. Nahata, A. Weling, and T. Heinz, Appl. Phys. Lett., 69, 2321–2323 (1996).

    ADS  Google Scholar 

  56. T. Loffler, T. Hahn, M. Thomson, F. Jacob, and H. Roskos, Opt. Express, 13, 5353–5362 (2005).

    ADS  Google Scholar 

  57. K. Liu, J. Xu, and X.-C. Zhang, Appl. Phys. Lett., 85, 863–865 (2004).

    ADS  Google Scholar 

  58. W. Shi, Y. Ding, N. Fernelius, and K. Vodopyanov, Opt. Lett., 27, 1454–1456 (2002).

    ADS  Google Scholar 

  59. J. Herbling, A. Stepanov, G. Almasi, B. Bartal, and J. Kuhl, Appl. Phys. B: Lasers Opt., 78, 593–597 (2006).

    ADS  Google Scholar 

  60. J. Gao, J. Hovenier, Z. Yang, J. Baselmans, A. Baryshev, M. Hajenius, T. Klapwijk, A. Adam, T. Klaassen, B. Williams, S. Kumar, and Q. Hu, Appl. Phys. Lett., 86, 244104-5 (2005).

    ADS  Google Scholar 

  61. S. Barbieri, J. Alton, C. Baker, T. Lo, H. Beere, and D. Ritchie, Opt. Express, 13, 6497–6503 (2005).

    ADS  Google Scholar 

  62. B. S. Karasik and R. Cantor, Appl. Phys. Lett., 98, 193503-3 (2011).

    ADS  Google Scholar 

  63. M. Rochat, L. Ajili, H. Willenberg, J. Faist, H. Beere, G. Davies, E. Linfield, and D. Ritchie, Appl. Phys. Lett., 81, 1381–1383 (2002).

    ADS  Google Scholar 

  64. R. Kohler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, D. A. Ritchie, R. C. Iotti, and F. Rossi, Nature, 417, 156–159 (2002).

    ADS  Google Scholar 

  65. B. Williams, S. Kumar, Q. Hu, and J. Reno, Opt. Express, 13, 3331–3339 (2005).

    ADS  Google Scholar 

  66. L. Li, L. Chen, J. Zhu, J. Freeman, P. Dean, A. Valavanis, A. G. Davies, and E. Linfield, Electron. Lett., 50, 309–311 (2014).

    Google Scholar 

  67. M. Belkin, Q. Wang, C. Pflugl, A. Belyanin, S. Khanna, A. Davies, E. Linfield, and F. Capasso, IEEE J. Sel. Top. Quantum Electron., 15, 952–967 (2009).

    Google Scholar 

  68. K. Vijayraghavan, Y. Jiang, M. Jang, A. Jiang, K. Choutaquanta, A. Vizbaras, F. Demmerle, G. Boehm, M. C. Amann, and M. A. Belkin, Nat. Commun., 4, 1–7 (2013).

    Google Scholar 

  69. O. Y. Lu, N. Bandyopadhyay, S. Slivken, Y. Bai, and M. Razeghi, Opt. Express, 21, No. 1, 968–973 (2013).

    ADS  Google Scholar 

  70. O. Y. Lu, N. Bandyopadhyay, S. Slivken, Y. Bai, and M. Razeghi, Appl. Phys. Lett., 101, No. 25, 251121-3 (2012).

    ADS  Google Scholar 

  71. K. Vijayraghavan, R. W. Adams, A. Vizbaras, M. Jang, C. Grasse, G. Boehm, M. C. Amann, and M. A. Belkin, Appl. Phys. Lett., 100, No. 25, 251104-4 (2012).

    ADS  Google Scholar 

  72. Q. Y. Lu, N. Bandyopadhyay, S. Slivken, Y. Bai, and M. Razeghi, Appl. Phys. Lett., 103, 011101-3 (2013).

    ADS  Google Scholar 

  73. E. Dupont, S. Fathololoumi, Z. R. Wasilewski, G. Aers, S. R. Laframboise, M. Lindskog, S. G. Razavipour, A. Wacker, D. Ban, and H. C. Liu, J. Appl. Phys., 111, No. 7, 073111-1–10 (2012).

    Google Scholar 

  74. P. Dean, Y. L. Lim, A. Valavanis, R. Kliese, M. Nikolic, S. P. Khanna, M. Lachab, D. Indjin, Z. Ikonic, P. Harrison, A. D. Rakic, E. H. Linfield, and A. G. Davies, Opt. Lett., 36, No. 13, 2587–2589 (2011).

    ADS  Google Scholar 

  75. B. Williams, S. Kumar, Q. Hu, and J. Reno, Electron. Lett., 42, 89–90 (2006).

    Google Scholar 

  76. H.-W. Hubers, S. Pavlov, A. Semenov, R. Kohler, L. Mahler, A. Tredicucci, H. Beere, D. Ritchie, and E. Linfield, Opt. Express, 13, 5890–5896 (2005).

    ADS  Google Scholar 

  77. S. Kumar, Q. Hu, and J. Reno, Appl. Phys. Lett., 94, 131105-3 (2009).

    ADS  Google Scholar 

  78. A. Lee and Q. Hu, Opt. Lett., 30, 2563–2565 (2005).

    ADS  Google Scholar 

  79. M. Belkin, J. Fan, S. Hormoz, F. Capasso, S. Khanna, M. Lachab, A. Davies, and E. Linfield, Opt. Express, 16, 3242–3248 (2008).

    ADS  Google Scholar 

  80. M. Belkin, F. Capasso, F. Belyanin, M. Fischer, A. Wittmann, and J. Faist, Appl. Phys. Lett., 92, 201101-2 (2008).

    ADS  Google Scholar 

  81. M. Amanti, M. Fischer, G. Scalari, M. Beck, and J. Faist, Nat. Photonics, 3, 586–590 (2009).

    ADS  Google Scholar 

  82. S. Kumar, C. Chan, Q. Hu, and J. Reno, Nat. Phys., 7, 166–171 (2011).

    Google Scholar 

  83. S. Fathololoumi, E. Dupont, C. Chan, Z. Wasilewski, S. Laframboise, D. Ban, A. Matyas, C. Jirauschek, Q. Hu, and H. Liu, Opt. Express, 20, 3866–3876 (2012).

    ADS  Google Scholar 

  84. H. Richter, M. Greiner-Bar, S. Pavlov, A. Semenov, M. Wienold, L. Schrottke, M. Giehler, R. Hey, H. Grahn, and H.-W. Hubers, Opt. Express, 18, 10177–10187 (2010).

    ADS  Google Scholar 

  85. S. Barbieri, P. Gellie, G. Santarelli, L. Ding, W. Maineult, C. Sirtori, R. Colombelli, H. Beere, and D. Ritchie, Nat. Photonics, 4, 636–640 (2010).

    ADS  Google Scholar 

  86. P. Khosropanah, A. Baryshev, W. Zhang, W. Jellema, J. Hovenier, J. Gao, T. Klapwijk, D. Paveliev, B. Williams, S. Kumar, Q. Hu, J. Reno, B. Klein, and J. Hesler, Opt. Lett., 34, 2958–2960 (2009).

    ADS  Google Scholar 

  87. S. Kumar, IEEE J. Sel. Top. Quantum Electron., 17, 38–47 (2011).

    MATH  Google Scholar 

  88. A. Semenov, L. Mahler, A. Tredicucci, H. Beere, D. Ritchie, and H.-W. Hubers, Appl. Phys. Lett., 96, 071112-3 (2010).

    ADS  Google Scholar 

  89. S. Kumar, B. Williams, Q. Qin, A. Lee, Q. Hu, and J. Reno, Opt. Express, 15, 113–128 (2007).

    ADS  Google Scholar 

  90. A. Lee, B. Williams, S. Kumar, Q. Hu, and J. Reno, Opt. Lett., 35, 910–912 (2010).

    ADS  Google Scholar 

  91. C. Pflugl, M. Belkin, Q. Wang, M. Geiser, A. Belyanin, M. Fischer, A. Wittmann, J. Faist, and F. Capasso, Appl. Phys. Lett., 93, 161110-3 (2008).

    ADS  Google Scholar 

  92. T. Bartel, P. Gaal, K. Reimann, M. Woerner, and T. Elsaesser, Opt. Lett., 30, 2805–2807 (2005).

    ADS  Google Scholar 

  93. J. Dai, X. Guo, and X.-C. Zhang, Technologies for Homeland and Security, HST’09 IEEE, Conference, Boston (2009), pp. 453–456.

  94. J. Dai, X. Lu, J. Liu, I. Ho, N. Karpowicz, and X.-C. Zhang, Terahertz Sci. Technol., 2, 131–143 (2009).

    Google Scholar 

  95. T.-J. Wang, S. Yuan, Y. Chen, J.-F. Daigle, C. Marceau, F. Theberge, M. Chateauneuf, J. Dubois, and S. Chin, Appl. Phys. Lett., 97, 111108-3 (2010).

    ADS  Google Scholar 

  96. Y. Zhang, Y. Chen, C. Marceau, W. Liu, Z.-D. Sun, S. Xu, F. Theberge, M. Chateauneuf, J. Dubois, and S. Chin, Opt. Express, 16, 15483–15488 (2008).

    ADS  Google Scholar 

  97. S. Xu, Y. Zhang, Y. Zheng, and W. Liu, Terahertz Sci. Technol., 3, 130–142 (2010).

    Google Scholar 

  98. W. Withayachumnankul, G. M. Png, X. X. Yin, S. Atakaramians, I. Jones, H. Lin, B. Ung, J. Balakrishnan, B. W.-H. Ng, B. Ferguson, S. P. Mickan, B. M. Fischer, and D. Abbott, Proc. IEEE, 95, No. 8, 1528–1558 (2007).

    Google Scholar 

  99. J. Dai, X. Xie, and X.-C. Zhang, Phys. Rev. Lett., 97, 103903-4 (2006).

    ADS  Google Scholar 

  100. M. C. Nuss and J. Orenstein, in: Topics in Applied Physics, Vol. 74, Millimeter and Submillimeter Wave Spectroscopy of Solids, Springer-Verlag, Berlin, Heidelberg (1998), pp. 7–50.

  101. R. Smith and M. Arnold, Appl. Spectrosc. Rev., 46, 636–679 (2011).

    ADS  Google Scholar 

  102. S. Nishizawa, K. Sakai, N. Hangyo, T. Nagashima, M. W. Takeda, K. Tominaga, A. Oka, K. Tanaka, and O. Morikawa, in: Topics in Applied Physics, Vol. 97, Terahertz Optoelectronics, K. Sakai (Ed.), Springer-Verlag, Berlin, Heidelberg (2005), pp. 203–270.

  103. G. Kitaeva, Laser Phys. Lett., 5, 561–564 (2008).

    ADS  Google Scholar 

  104. M. Naftaly and R. Dudley, Opt. Lett., 34, 1213–1215 (2009).

    ADS  Google Scholar 

  105. http://lts.fzu.cz/en/intro.htm [Online; Accessed Jun. 30, 2012].

  106. S. Vidal, J. Degert, M. Tondusson, J. Oberle, and E. Freysz, Appl. Phys. Lett., 98, 191103-3 (2011).

    ADS  Google Scholar 

  107. X. Wang, Y. Cui, W. Sun, J. Ye, and Y. Zhang, J. Opt. Soc. Am. A, 27, 2387–2393 (2010).

    ADS  Google Scholar 

  108. A. Jameson, "Generating and Using Terahertz Radiation to Explore Carrier Dynamics of Semiconductor and Metal Nanostructures," Ph.D. Thesis, Oregon St. Univ. (2012).

  109. P. Jepsen and B. Fischer, Opt. Lett., 30, 29–31 (2005).

    ADS  Google Scholar 

  110. N. Karpowicz, D. Jianming, L. Xiaofei, Y. Chen, M. Yamaguchi, H. Zhao, X.-C. Zhang, M. Price-Gallagher, C. Fletcher, O. Mamer, A. Lesimple, and K. Johnson, Appl. Phys. Lett., 92, 011131-3 (2008).

    ADS  Google Scholar 

  111. K. Yamamoto, M. Yamaguchi, F. Miyamaru, M. Tani, M. Hangyo, T. Ikeda, A. Matsushita, K. Koide, M. Tatsuno, and Y. Minami, Jpn. J. Appl. Phys., 43, 414–417 (2004).

    ADS  Google Scholar 

  112. J. Barber, D. E. Hooks, D. J. Funk, R. D. Averitt, A. J. Taylor, and D. Babikov, J. Phys. Chem. A, 109, 3501–3505 (2005).

    Google Scholar 

  113. N. Palka, T. Trzcinski, and M. Szustakowski, Acta Phys. Pol., A, 122, No. 5, 946–949 (2012).

    Google Scholar 

  114. M. Leahy-Hoppa, M. Fitch, X. Zheng, L. Hayden, and R. Osiander, Chem. Phys. Lett., 434, 227–230 (2007).

    ADS  Google Scholar 

  115. M. Hangyo, M. Tani, and T. Nagashima, J. Infrared, Millimeter, Terahertz Waves, 26, 1661–1690 (2005).

    ADS  Google Scholar 

  116. H.-T. Chen, W. J. Padilla, J. M. O. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, Nature, 444, 597–600 (2006).

    ADS  Google Scholar 

  117. M. M. Nazarov, A. A. Angeluts, D. A. Sapozhnikov, and A. P. Shkurinov, Izv. Vyssh. Uchebn. Zaved., Radiofiz., 52, No. 8, 595–606 (2009).

    Google Scholar 

  118. J. Baxter and G. Guglietta, Anal. Chem., 83, No. 12, 4342–4368 (2011).

    Google Scholar 

  119. M. Scheller and M. Koch, Opt. Express, 17, 17723–17733 (2009).

    ADS  Google Scholar 

  120. N. Krumbholz, C. Jansen, M. Scheller, T. Muller-Wirts, S. Lubbecke, R. Holzwarth, R. Scheunemann, R. Wilk, B. Sartorius, H. Roehle, D. Stanze, J. Beckmann, L. S. von Chrzanowski, U. Ewert, and M. Koch, Proc. SPIE Int. Soc. Opt. Eng., 7485, 7485-04 (2009).

    ADS  Google Scholar 

  121. W. Tribe, D. Newnham, P. Taday, and M. Kemp, Proc. SPIE Int. Soc. Opt. Eng., 5354, 168–176 (2004).

    ADS  Google Scholar 

  122. P. Benicewicz, J. Roberts, and A. Taylor, J. Opt. Soc. Am., 12, 2533–2546 (1994).

    Google Scholar 

  123. N. Sarukura, H. Ohtake, S. Izumida, and Z. Liu, J. Appl. Phys., 84, 654–666 (1998).

    ADS  Google Scholar 

  124. M. Li and X. Zhang, Proc. SPIE Int. Soc. Opt. Eng., 3616, 126–135 (1999).

    ADS  Google Scholar 

  125. A. Gurtler, C. Winnewisser, H. Helm, and P. Jepsen, J. Opt. Soc. Am., 1, 74–83 (2000).

    Google Scholar 

  126. S. Izumida, S. Ono, Z. Liu, H. Ohatake, and N. Sarukura, Appl. Phys. Lett., 75, 451–453 (1999).

    ADS  Google Scholar 

  127. T. Kondo, M. Sakamoto, M. Tonouchi, and M. Hangyo, Jpn. J. Appl. Phys., 38, L1035–L1037 (1999).

    ADS  Google Scholar 

  128. M. Kemp, A. Glauser, and C. Baker, Proc. SPIE Int. Soc. Opt. Eng., 6212, 62120T-6 (2006).

    ADS  Google Scholar 

  129. Y. Shen, P. Taday, and M. Kemp, Proc. SPIE Int. Soc. Opt. Eng., 5619, 82–89 (2004).

    ADS  Google Scholar 

  130. Y. Shen, P. Taday, D. Newnham, and H. Pepper, Semicond. Sci. Technol., 20, S254–S257 (2005).

    ADS  Google Scholar 

  131. P. Jepsen, D. Cooke, and M. Koch, Laser Photonics Rev., 5, 124–166 (2011).

    Google Scholar 

  132. M. Kemp, Terahertz Sci. Technol., 1, 282–292 (2011).

    Google Scholar 

  133. V. Krozer, T. Loffer, J. Dall, A. Kusk, F. Eichan, R. Olsson, J. Buron, P. Jepsen, V. Zhurbenko, and T. Jensen, IEEE Trans. Microwave Theory Tech., 58, 2027–2039 (2010).

    ADS  Google Scholar 

  134. F. Simoens, J. Meilham, B. Delplanque, S. Gidon, G. Lasfarques, J. Lalanue Dera, D. Nguyen, J. Ouvrier-Buffet, S. Pocas, T. Mailon, O. Cathhaband, and S. Barbieri, Proc. SPIE Int. Soc. Opt. Eng., 8363, 8363D-1–5 (2012).

    ADS  Google Scholar 

  135. H. Zhong, A. Redo-Sanchez, and X.-C. Zhang, Opt. Express, 14, 9130–9141 (2006).

    ADS  Google Scholar 

  136. Z. Zhang, Y. Zhang, G. Zhao, and C. Zhang, Optik, 118, 325–329 (2007).

    ADS  Google Scholar 

  137. C. Konek, B. Mason, J. Hooper, C. Stoltz, and J. Wilkinson, Chem. Phys. Lett., 489, 48–53 (2010).

    ADS  Google Scholar 

  138. H. Zhong, A. Redo-Sanchez, and X.-C. Zhang, Int. J. High Speed Electron. Syst., 17, 239–249 (2007).

    Google Scholar 

  139. Y. Watanabe, K. Kawase, and T. Ikari, Appl. Phys. Lett., 83, 800–802 (2003).

    ADS  Google Scholar 

  140. Y. Watanabe, K. Kawase, T. Ikari, H. Ito, Y. Ishikawa, and H. Minamide, Opt. Commun., 234, 125–129 (2004).

    ADS  Google Scholar 

  141. C. Baker, W. Tribe, T. Lo, B. Cole, S. Chandler, and M. Kemp, Proc. SPIE Int. Soc. Opt. Eng., 95, 1559–1565 (2007).

    Google Scholar 

  142. T. Lo, I. Gregory, C. Baker, P. Taday, W. Tribe, and M. Kemp, Vib. Spectrosc., 42, 243–248 (2006).

    Google Scholar 

  143. H.-B. Liu, Y. Chen, G. Bastiaans, and X.-C. Zhang, Opt. Express, 14, 415–423 (2006).

    ADS  Google Scholar 

  144. H. Zhong, "Terahertz Wave Refl ective Sensing and Imaging," Doctoral dissertation, Rensselaer Polytechnic Inst. (2006).

  145. Y. C. Shen, T. Lo, P. F. Taday, B. E. Cole, W. R. Tribe, and M. C. Kemp, Appl. Phys. Lett., 86, 241116-3 (2005).

    ADS  Google Scholar 

  146. M. Brandstetter, C. Deutsch, M. Krall, H. Detz, D. C. MacFarland, T. Zederbauer, A. M. Andrews, W. Schrenk, G. Strasser, and K. Unterrainer, Appl. Phys. Lett., 103, 17113-5 (2013).

    Google Scholar 

  147. J. Federici, B. Schulkin, F. Huang, D. Gary, R. Barat, F. Oliveiraand, and D. Zimdars, Semicond. Sci. Technol., 20, S266–S280 (2005).

    ADS  Google Scholar 

  148. A. W. M. Lee, Q. Qin, S. Kumar, B. S. Williams, Q. Hu, and J. L. Reno, Appl. Phys. Lett., 89, 141125-3 (2006).

    ADS  Google Scholar 

  149. A. Lee, B. Williams, S. Kumar, Q. Hu, and J. Reno, IEEE Photonics Technol. Lett., 18, 1415–1417 (2006).

    ADS  Google Scholar 

  150. Q. Hu, Terahertz Sci. Technol., 1, 1–10 (2008).

    Google Scholar 

  151. N. Oda, C. R. Phys., 11, 496–509 (2010).

    ADS  Google Scholar 

  152. N. Oda, A. Lee, T. Ishi, I. Hosako, and Q. Hu, Proc. SPIE Int. Soc. Opt. Eng., 8363, 83630A-5 (2012).

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. A. Skvortsov.

Additional information

Translated from Zhurnal Prikladnoi Spektroskopii, Vol. 81, No. 5, pp. 653–678, September–October, 2014.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Skvortsov, L.A. Standoff Detection of Hidden Explosives and Cold and Fire Arms by Terahertz Time-Domain Spectroscopy and Active Spectral Imaging (Review). J Appl Spectrosc 81, 725–749 (2014). https://doi.org/10.1007/s10812-014-9998-2

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10812-014-9998-2

Keywords

Navigation