Journal of Applied Spectroscopy

, Volume 81, Issue 3, pp 519–524 | Cite as

Spectroscopic Investigation of Nano-Sized Strontium Ferrite Particles at Different Annealing Temperatures

  • K. Alamelu Mangai
  • M. Priya
  • M. Rathnakumari
  • P. Sureshkumar

Strontium ferrite enjoys a high degree of chemical stability and is completely nontoxic, which makes it ideal for a wide range of applications. Magnetoplumbite-type (M-type) hexagonal strontium ferrite particles were synthesized via the sol-gel technique employing ethylene glycol as the gel precursor. The phase morphology, particle diameter, and magnetic properties of the prepared samples were studied using X-ray diffractometry (XRD), scanning electron microscope (SEM), and a vibrating sample magnetometer (VSM), respectively. The effect of temperature on the crystal structure, morphology, and magnetic studies were carried out. Also, the thermal decomposition of assynthesized powdered samples has been studied by thermogravimetric (TG) and differential thermal analysis (DTA) methods. The optical properties were analyzed using fluorescence spectra. The XRD results showed that the samples synthesized at 600°C, 800°C, and 1000°C were of single phase and smaller crystallite size. The intensity of the emission spectra of strontium ferrite was also examined. The yield percentage along with structure determination and VSM studies of the prepared samples are discussed in detail.


hexaferrite nanoparticle sol-gel technique thermal analysis vibrating sample magnetometer 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    O. Kubo, T. Ido, and H. Jokoyama, IEEE Trans. Magn., 18, 1122–1124 (1982).ADSCrossRefGoogle Scholar
  2. 2.
    V. Adelsköld, Arkiv. For Kemi, Min. Och. Geo., 12A, 291 (1938).Google Scholar
  3. 3.
    J. Smit and H. P. J. Wijn, Ferrites: Physical Properties of Ferrimagnetic Oxides in Relation to Their Technical Application, Wiley, New York (1959).Google Scholar
  4. 4.
    X. X. Liu, J. M. Bai, F. L. Wei, Z. Yang, A. Morisako, and M. Matsunori, J. Magn. Magn. Mater., 212, 273–275 (2000).ADSCrossRefGoogle Scholar
  5. 5.
    Z. F. Zi, Y. P. Sun, X. B. Zhu, Z. R. Yang, J. M. Dai, and W. H. Song, J. Magn. Magn. Mater., 320, 2746 (2008).ADSCrossRefGoogle Scholar
  6. 6.
    M. M. Hessien, M. M. Rashad, and K. El-Barawy, J. Magn. Magn. Mater., 320, 336–343 (2008).ADSCrossRefGoogle Scholar
  7. 7.
    C. M. Fang, F. Kools, R. Metselaar, G. With, and R. Root, J. Phys.: Condens. Matter, 15, 6229 (2003).ADSGoogle Scholar
  8. 8.
    G. B. The and Y. C. Wong, J. Magn. Magn. Mater., 323, 2318–2322 (2011)ADSCrossRefGoogle Scholar
  9. 9.
    T. R. Wagner, J. Solid State Chem., 136, 120 (1998).ADSCrossRefGoogle Scholar
  10. 10.
    G. B. Teh, Y. C. Wong, J. Wang, S. G. Tan, and B. Samini, Mater. Sci. Forum, 654656, 1134 (2010).CrossRefGoogle Scholar
  11. 11.
    Z. Wenyu, Z. Qingjie, and G. Jianjuo, J. Wuhan Univ. Technol.Mater. Sci. Ed., 21, 102–105 (2006).Google Scholar
  12. 12.
    K. V. P. Shafi , A. Gedanken, R. Prozorov, and J. Balogh, Chem. Mater., 10, 3445 (1998).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • K. Alamelu Mangai
    • 1
  • M. Priya
    • 2
  • M. Rathnakumari
    • 3
  • P. Sureshkumar
    • 3
  1. 1.Department of PhysicsVelTech HighTech Engineering CollegeAvadiIndia
  2. 2.Department of PhysicsSaveetha Engineering CollegeChennaiIndia
  3. 3.Department of PhysicsVelammal Engineering CollegeSurapetIndia

Personalised recommendations