Journal of Applied Spectroscopy

, Volume 81, Issue 3, pp 476–482 | Cite as

Determination of the Dispersion of the Principal Refractive Indices for Birefringent Polypropylene Films

  • V. S. Bezruchenko
  • An. A. Murauski
  • Al. A. Muravsky

We present a novel method for determining the dispersion of the refractive indices of birefringent films, based on treatment of transmission spectra, in which we observe interference of light. The dispersion curves n x (λ) and n y (λ) were determined by treatment of transmission spectra obtained for normal incidence of radiation on a P2-25 birefringent fi lm, and n z (λ) was determined for oblique incidence of radiation. From the results of determination of the dispersions of the principal refractive indices of a birefringent P2-25 polypropylene film (Mogilevkhimvolokno OAO, Belarus), we established that the sample is a negative biaxial retarder with N z = 2.9.


dispersion anisotropy interference circular polarizer compensating films phase retarder 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. K. Bhowmik, Inform. Display, No. 4, 6–10 (2013).Google Scholar
  2. 2.
    C.-H. Lin, Opt. Express, 16, No. 17, 13276–13286 (2008).ADSCrossRefGoogle Scholar
  3. 3.
    K. Hanaoka, Y. Inoue, T. Mayama, Y. Nakanishi, K. Okamoto, T. Sasabayashi, S. Tanuma, Y. Tasaka, and H. Yoshida, Viewing Angle Compensation Film and Liquid Crystal Display, US Patent 7319500 B2 (2008).Google Scholar
  4. 4.
    Al. A. Muravsky, An. A. Muravski, V. E. Agabekov, O. O. Chuvasheva, and N. A. Ivanova, Zh. Prikl. Spektrosk., 79, No. 5, 825–830 (2012).Google Scholar
  5. 5.
    O. L. Parri, K. Adlem, S. Skjonnemand, and D. Wilkes, Birefringent Layer with Negative Optical Dispersion, US Patent 8119026 B2 (2012).Google Scholar
  6. 6.
    V. S. Bezruchenko, An. A. Muravski, Al. A. Muravsky, N. A. Ivanova, and V. E. Agabekov, Vestn. MGOU. Ser. Fiz.-Mat., No. 1, 90–94 (2013).Google Scholar
  7. 7.
    G. S. Landsberg, Optics [in Russian], Fizmatlit, Moscow (2003), 6th edn., pp. 287, 15–4, 428–436, 461–463.Google Scholar
  8. 8.
    M. J. Harding and M. J. Banach, SID Dig. Tech., 44, 167–170 (2013).CrossRefGoogle Scholar
  9. 9.
    Nitto Denko, Three-Dimensional Refractive Index of Retardation Film, Tokyo (2004), No. 10, p. 11.Google Scholar
  10. 10.
    F. I. Fedorov, Physics of Anisotropic Media [in Russian], Editorial URSS, Moscow (2004), pp. 234–262.Google Scholar
  11. 11.
    A. N. Chuvyrov and Sh. K. Nasibullaev, Laboratory Research in Physics, Pt. 3, Optika (2005), Nos. 3–6.Google Scholar
  12. 12.
    G. H. Meeteen (Schlumberger Cambridge Research), Refractive Index Measurement, CRC Press (1999), Ch. 61, Section 61.3.Google Scholar
  13. 13.
    G. Beadie, A. Rosenberg, and S. Shirk, Frontiers in Optics 2010/Laser Science XXVI, OSA Tech. Digest (2010), FthU4.Google Scholar
  14. 14.
    K. A.-A. Salwan, J. Appl. Phys., No. 1, 17–23 (2008).Google Scholar
  15. 15.
    D. Poelman and P. F. Smet, J. Phys. D: Appl. Phys., No. 36, 1850–1857 (2003).Google Scholar
  16. 16.
    P. Yeh and C. Gu, Optics of Liquid Crystal Displays, Wiley, New York (1999).Google Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • V. S. Bezruchenko
    • 1
  • An. A. Murauski
    • 1
  • Al. A. Muravsky
    • 1
  1. 1.Institute of Chemistry of New MaterialsNational Academy of Sciences of BelarusMinskBelarus

Personalised recommendations