Journal of Applied Spectroscopy

, Volume 81, Issue 2, pp 174–182 | Cite as

Hydrophobic-Radical Influence on the Structure and Vibrational Spectra of Zwitterionic Glycine and Alanine in the Condensed State


The structure and vibrational spectra of zwitterionic glycine and alanine in aqueous solution and the solid state were calculated in the B3LYP/6-311++G(d,p) approximation. The environment infl uence was taken into account by two methods, i.e., the self-consistent reaction fi eld (SCRF) model and a clear accounting for the effects of hydrogenbonds (complexes with water molecules). The geometric, energetic, and spectral characteristics required to establish that a hydrophobic radical affected the ability of glycine and alanine to form H-bonds were determined. It was found by comparison with experiment that zwitterionic glycine and alanine in the condensed states had to be surrounded with three water molecules, one of which was situated between the N+H3 and COO– ions, in order to calculate their vibrational (IR and Raman) spectra. The formation energies of the alanine complexes with water were 56.47 kcal/ mol and 12.55 kcal/mol greater than those of glycine for formation of a complex with one water molecule situated between the ionized groups and with three water molecules, respectively.


glycine alanine zwitterionic form vibrational spectra condensed state hydrogen bond hydrophobicity 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. R. Rees and M. J. E. Sternberg, From Cells to Atoms, Blackwell Scientifi c Publ., Oxford, Boston (1984).Google Scholar
  2. 2.
    A. A. Ivanov, E. V. Korolik, N.I. Insarova, R. G. Zhbankov, and V. P. Golubovich, Zh. Prikl. Spektrosk., 53, 265–270 (1990).Google Scholar
  3. 3.
    A. A. Ivanov, E. V. Korolik, N. I. Insarova, and G. K. Il′ich, Zh. Prikl. Spektrosk., 54, 464–468 (1991).Google Scholar
  4. 4.
    V. S. Min′kov, Yu. A. Chesalov, and E. V. Boldyreva, Zh. Strukt. Khim., 51, 1091–1102 (2010).Google Scholar
  5. 5.
    M. Takeda, R. E. S. Iavazzo, D. Garfi nkel, I. H.Scheinberg, and J. T. Edsall, J. Am. Chem. Soc., 80, 3813–3818 (1958).CrossRefGoogle Scholar
  6. 6.
    J. F. Pearson and M. A. Slifkin, Spectrochim. Acta, Part A, 28, 3403–3417 (1972).Google Scholar
  7. 7.
    M. Kakihana, M. Akiyama, T. Nagumo, and M. Okamoto, Z. Naturforsch. A: Phys. Sci., 43, 774–792 (1988).Google Scholar
  8. 8.
    X. Cao and G. Fischer, J. Phys. Chem. A, 103, 9995–10003 (1999).Google Scholar
  9. 9.
    X. Cao and G. Fischer, Chem. Phys., 255, 193–204 (2000).CrossRefADSGoogle Scholar
  10. 10.
    G. F. Nobrega, J. R. Sambrano, A. R. de Souza, J. J. Queralt, and E. Longo, J. Mol. Struct.: THEOCHEM, 544, 151–157 (2001).Google Scholar
  11. 11.
    A. Comez-Zavaglia and R. Fausto, Phys. Chem. Chem. Phys., 5, 3154–3161 (2003).CrossRefGoogle Scholar
  12. 12.
    N. Derbel, B. Hernandez, F. Pfl uger, J. Liquier, F. Geinguenaud, N. Jaidane, Y. B. Lakhdar, and M. Ghomi, J. Phys. Chem. B, 111, 1470–1477 (2007).CrossRefGoogle Scholar
  13. 13.
    B. Hernandez, F. Pfl uger, M. Nsangou, and M. Ghomi, J. Phys. Chem. B, 113, 3169–3178 (2009).CrossRefGoogle Scholar
  14. 14.
    J. P. Berumen, E. O. Borunda, A. D. Moller, and R. A. S. Molina, Int. J. Phys. Sci., 6, 6127–6132 (2011).Google Scholar
  15. 15.
    R. Ramaekers, J. Pajak, B. Lambie, and G. Maes, J. Chem. Phys., 120, 4182–4193 (2004).Google Scholar
  16. 16.
    M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, and D. J. Fox, Gaussian 09, Gaussian Inc., Wallingford, CT (2009).Google Scholar
  17. 17.
    G. V. Gurskaya, Protein Structure [in Russian], Nauka, Moscow (1966).Google Scholar
  18. 18.
    G. A. Jeffrey and W. Saenger, Hydrogen Bonding in Biological Structures, Springer, Berlin (1991).Google Scholar
  19. 19.
    W. Saenger, Principles of Nucleic Acid Structure, Springer-Verlag, New York (1989).Google Scholar
  20. 20.
    C. H. Wang and R. D. Storms, J. Chem. Phys., 55, 3291–3299 (1971).Google Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.N. G. Chernyshevskii Saratov State UniversitySaratovRussia
  2. 2.V. I. Vernadsky Institute for Geochemistry and Analytical ChemistryMoscowRussia

Personalised recommendations