Skip to main content
Log in

Hydrophobic-Radical Influence on the Structure and Vibrational Spectra of Zwitterionic Glycine and Alanine in the Condensed State

  • Published:
Journal of Applied Spectroscopy Aims and scope

The structure and vibrational spectra of zwitterionic glycine and alanine in aqueous solution and the solid state were calculated in the B3LYP/6-311++G(d,p) approximation. The environment infl uence was taken into account by two methods, i.e., the self-consistent reaction fi eld (SCRF) model and a clear accounting for the effects of hydrogenbonds (complexes with water molecules). The geometric, energetic, and spectral characteristics required to establish that a hydrophobic radical affected the ability of glycine and alanine to form H-bonds were determined. It was found by comparison with experiment that zwitterionic glycine and alanine in the condensed states had to be surrounded with three water molecules, one of which was situated between the N+H3 and COO– ions, in order to calculate their vibrational (IR and Raman) spectra. The formation energies of the alanine complexes with water were 56.47 kcal/ mol and 12.55 kcal/mol greater than those of glycine for formation of a complex with one water molecule situated between the ionized groups and with three water molecules, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. R. Rees and M. J. E. Sternberg, From Cells to Atoms, Blackwell Scientifi c Publ., Oxford, Boston (1984).

    Google Scholar 

  2. A. A. Ivanov, E. V. Korolik, N.I. Insarova, R. G. Zhbankov, and V. P. Golubovich, Zh. Prikl. Spektrosk., 53, 265–270 (1990).

    Google Scholar 

  3. A. A. Ivanov, E. V. Korolik, N. I. Insarova, and G. K. Il′ich, Zh. Prikl. Spektrosk., 54, 464–468 (1991).

    Google Scholar 

  4. V. S. Min′kov, Yu. A. Chesalov, and E. V. Boldyreva, Zh. Strukt. Khim., 51, 1091–1102 (2010).

    Google Scholar 

  5. M. Takeda, R. E. S. Iavazzo, D. Garfi nkel, I. H.Scheinberg, and J. T. Edsall, J. Am. Chem. Soc., 80, 3813–3818 (1958).

    Article  Google Scholar 

  6. J. F. Pearson and M. A. Slifkin, Spectrochim. Acta, Part A, 28, 3403–3417 (1972).

    Google Scholar 

  7. M. Kakihana, M. Akiyama, T. Nagumo, and M. Okamoto, Z. Naturforsch. A: Phys. Sci., 43, 774–792 (1988).

    Google Scholar 

  8. X. Cao and G. Fischer, J. Phys. Chem. A, 103, 9995–10003 (1999).

    Google Scholar 

  9. X. Cao and G. Fischer, Chem. Phys., 255, 193–204 (2000).

    Article  ADS  Google Scholar 

  10. G. F. Nobrega, J. R. Sambrano, A. R. de Souza, J. J. Queralt, and E. Longo, J. Mol. Struct.: THEOCHEM, 544, 151–157 (2001).

    Google Scholar 

  11. A. Comez-Zavaglia and R. Fausto, Phys. Chem. Chem. Phys., 5, 3154–3161 (2003).

    Article  Google Scholar 

  12. N. Derbel, B. Hernandez, F. Pfl uger, J. Liquier, F. Geinguenaud, N. Jaidane, Y. B. Lakhdar, and M. Ghomi, J. Phys. Chem. B, 111, 1470–1477 (2007).

    Article  Google Scholar 

  13. B. Hernandez, F. Pfl uger, M. Nsangou, and M. Ghomi, J. Phys. Chem. B, 113, 3169–3178 (2009).

    Article  Google Scholar 

  14. J. P. Berumen, E. O. Borunda, A. D. Moller, and R. A. S. Molina, Int. J. Phys. Sci., 6, 6127–6132 (2011).

    Google Scholar 

  15. R. Ramaekers, J. Pajak, B. Lambie, and G. Maes, J. Chem. Phys., 120, 4182–4193 (2004).

    Google Scholar 

  16. M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, and D. J. Fox, Gaussian 09, Gaussian Inc., Wallingford, CT (2009).

    Google Scholar 

  17. G. V. Gurskaya, Protein Structure [in Russian], Nauka, Moscow (1966).

    Google Scholar 

  18. G. A. Jeffrey and W. Saenger, Hydrogen Bonding in Biological Structures, Springer, Berlin (1991).

    Google Scholar 

  19. W. Saenger, Principles of Nucleic Acid Structure, Springer-Verlag, New York (1989).

    Google Scholar 

  20. C. H. Wang and R. D. Storms, J. Chem. Phys., 55, 3291–3299 (1971).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. N. Ten.

Additional information

Translated from Zhurnal Prikladnoi Spektroskopii, Vol. 81, No. 2, pp. 178–186, March–April, 2014.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ten, G.N., Kadrov, D.M. & Baranov, V.I. Hydrophobic-Radical Influence on the Structure and Vibrational Spectra of Zwitterionic Glycine and Alanine in the Condensed State. J Appl Spectrosc 81, 174–182 (2014). https://doi.org/10.1007/s10812-014-9906-9

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10812-014-9906-9

Keywords

Navigation